mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-15 14:11:14 +00:00
refactor: The first refactored version for sdk release (#907)
Co-authored-by: chengfangyin2 <chengfangyin3@jd.com>
This commit is contained in:
54
dbgpt/app/scene/chat_dashboard/prompt.py
Normal file
54
dbgpt/app/scene/chat_dashboard/prompt.py
Normal file
@@ -0,0 +1,54 @@
|
||||
import json
|
||||
from dbgpt.core.interface.prompt import PromptTemplate
|
||||
from dbgpt._private.config import Config
|
||||
from dbgpt.app.scene import ChatScene
|
||||
from dbgpt.app.scene.chat_dashboard.out_parser import ChatDashboardOutputParser
|
||||
|
||||
CFG = Config()
|
||||
|
||||
PROMPT_SCENE_DEFINE = "You are a data analysis expert, please provide a professional data analysis solution"
|
||||
|
||||
_DEFAULT_TEMPLATE = """
|
||||
According to the following table structure definition:
|
||||
{table_info}
|
||||
Provide professional data analysis to support users' goals:
|
||||
{input}
|
||||
|
||||
Provide at least 4 and at most 8 dimensions of analysis according to user goals.
|
||||
The output data of the analysis cannot exceed 4 columns, and do not use columns such as pay_status in the SQL where condition for data filtering.
|
||||
According to the characteristics of the analyzed data, choose the most suitable one from the charts provided below for data display, chart type:
|
||||
{supported_chat_type}
|
||||
|
||||
Pay attention to the length of the output content of the analysis result, do not exceed 4000 tokens
|
||||
|
||||
Give the correct {dialect} analysis SQL
|
||||
1.Do not use unprovided values such as 'paid'
|
||||
2.All queried values must have aliases, such as select count(*) as count from table
|
||||
3.If the table structure definition uses the keywords of {dialect} as field names, you need to use escape characters, such as select `count` from table
|
||||
4.Carefully check the correctness of the SQL, the SQL must be correct, display method and summary of brief analysis thinking, and respond in the following json format:
|
||||
{response}
|
||||
The important thing is: Please make sure to only return the json string, do not add any other content (for direct processing by the program), and the json can be parsed by Python json.loads
|
||||
"""
|
||||
|
||||
RESPONSE_FORMAT = [
|
||||
{
|
||||
"sql": "data analysis SQL",
|
||||
"title": "Data Analysis Title",
|
||||
"showcase": "What type of charts to show",
|
||||
"thoughts": "Current thinking and value of data analysis",
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
PROMPT_NEED_STREAM_OUT = False
|
||||
|
||||
prompt = PromptTemplate(
|
||||
template_scene=ChatScene.ChatDashboard.value(),
|
||||
input_variables=["input", "table_info", "dialect", "supported_chat_type"],
|
||||
response_format=json.dumps(RESPONSE_FORMAT, indent=4),
|
||||
template_define=PROMPT_SCENE_DEFINE,
|
||||
template=_DEFAULT_TEMPLATE,
|
||||
stream_out=PROMPT_NEED_STREAM_OUT,
|
||||
output_parser=ChatDashboardOutputParser(is_stream_out=PROMPT_NEED_STREAM_OUT),
|
||||
)
|
||||
CFG.prompt_template_registry.register(prompt, is_default=True)
|
Reference in New Issue
Block a user