refactor: The first refactored version for sdk release (#907)

Co-authored-by: chengfangyin2 <chengfangyin3@jd.com>
This commit is contained in:
FangYin Cheng
2023-12-08 14:45:59 +08:00
committed by GitHub
parent e7e4aff667
commit cd725db1fb
573 changed files with 2094 additions and 3571 deletions

View File

@@ -0,0 +1,327 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Dict, List, Tuple, Union
from datetime import datetime
from dbgpt._private.pydantic import BaseModel, Field
class BaseMessage(BaseModel, ABC):
"""Message object."""
content: str
additional_kwargs: dict = Field(default_factory=dict)
@property
@abstractmethod
def type(self) -> str:
"""Type of the message, used for serialization."""
class HumanMessage(BaseMessage):
"""Type of message that is spoken by the human."""
example: bool = False
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "human"
class AIMessage(BaseMessage):
"""Type of message that is spoken by the AI."""
example: bool = False
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "ai"
class ViewMessage(BaseMessage):
"""Type of message that is spoken by the AI."""
example: bool = False
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "view"
class SystemMessage(BaseMessage):
"""Type of message that is a system message."""
@property
def type(self) -> str:
"""Type of the message, used for serialization."""
return "system"
class ModelMessageRoleType:
""" "Type of ModelMessage role"""
SYSTEM = "system"
HUMAN = "human"
AI = "ai"
VIEW = "view"
class ModelMessage(BaseModel):
"""Type of message that interaction between dbgpt-server and llm-server"""
"""Similar to openai's message format"""
role: str
content: str
@staticmethod
def from_openai_messages(
messages: Union[str, List[Dict[str, str]]]
) -> List["ModelMessage"]:
"""Openai message format to current ModelMessage format"""
if isinstance(messages, str):
return [ModelMessage(role=ModelMessageRoleType.HUMAN, content=messages)]
result = []
for message in messages:
msg_role = message["role"]
content = message["content"]
if msg_role == "system":
result.append(
ModelMessage(role=ModelMessageRoleType.SYSTEM, content=content)
)
elif msg_role == "user":
result.append(
ModelMessage(role=ModelMessageRoleType.HUMAN, content=content)
)
elif msg_role == "assistant":
result.append(
ModelMessage(role=ModelMessageRoleType.AI, content=content)
)
else:
raise ValueError(f"Unknown role: {msg_role}")
return result
@staticmethod
def to_openai_messages(messages: List["ModelMessage"]) -> List[Dict[str, str]]:
"""Convert to OpenAI message format and
hugggingface [Templates of Chat Models](https://huggingface.co/docs/transformers/v4.34.1/en/chat_templating)
"""
history = []
# Add history conversation
for message in messages:
if message.role == ModelMessageRoleType.HUMAN:
history.append({"role": "user", "content": message.content})
elif message.role == ModelMessageRoleType.SYSTEM:
history.append({"role": "system", "content": message.content})
elif message.role == ModelMessageRoleType.AI:
history.append({"role": "assistant", "content": message.content})
else:
pass
# Move the last user's information to the end
temp_his = history[::-1]
last_user_input = None
for m in temp_his:
if m["role"] == "user":
last_user_input = m
break
if last_user_input:
history.remove(last_user_input)
history.append(last_user_input)
return history
@staticmethod
def to_dict_list(messages: List["ModelMessage"]) -> List[Dict[str, str]]:
return list(map(lambda m: m.dict(), messages))
@staticmethod
def build_human_message(content: str) -> "ModelMessage":
return ModelMessage(role=ModelMessageRoleType.HUMAN, content=content)
def _message_to_dict(message: BaseMessage) -> dict:
return {"type": message.type, "data": message.dict()}
def _messages_to_dict(messages: List[BaseMessage]) -> List[dict]:
return [_message_to_dict(m) for m in messages]
def _message_from_dict(message: dict) -> BaseMessage:
_type = message["type"]
if _type == "human":
return HumanMessage(**message["data"])
elif _type == "ai":
return AIMessage(**message["data"])
elif _type == "system":
return SystemMessage(**message["data"])
elif _type == "view":
return ViewMessage(**message["data"])
else:
raise ValueError(f"Got unexpected type: {_type}")
def _messages_from_dict(messages: List[dict]) -> List[BaseMessage]:
return [_message_from_dict(m) for m in messages]
def _parse_model_messages(
messages: List[ModelMessage],
) -> Tuple[str, List[str], List[List[str, str]]]:
"""
Parameters:
messages: List of message from base chat.
Returns:
A tuple contains user prompt, system message list and history message list
str: user prompt
List[str]: system messages
List[List[str]]: history message of user and assistant
"""
user_prompt = ""
system_messages: List[str] = []
history_messages: List[List[str]] = [[]]
for message in messages[:-1]:
if message.role == "human":
history_messages[-1].append(message.content)
elif message.role == "system":
system_messages.append(message.content)
elif message.role == "ai":
history_messages[-1].append(message.content)
history_messages.append([])
if messages[-1].role != "human":
raise ValueError("Hi! What do you want to talk about")
# Keep message pair of [user message, assistant message]
history_messages = list(filter(lambda x: len(x) == 2, history_messages))
user_prompt = messages[-1].content
return user_prompt, system_messages, history_messages
class OnceConversation:
"""
All the information of a conversation, the current single service in memory, can expand cache and database support distributed services
"""
def __init__(self, chat_mode, user_name: str = None, sys_code: str = None):
self.chat_mode: str = chat_mode
self.messages: List[BaseMessage] = []
self.start_date: str = ""
self.chat_order: int = 0
self.model_name: str = ""
self.param_type: str = ""
self.param_value: str = ""
self.cost: int = 0
self.tokens: int = 0
self.user_name: str = user_name
self.sys_code: str = sys_code
def add_user_message(self, message: str) -> None:
"""Add a user message to the store"""
has_message = any(
isinstance(instance, HumanMessage) for instance in self.messages
)
if has_message:
raise ValueError("Already Have Human message")
self.messages.append(HumanMessage(content=message))
def add_ai_message(self, message: str) -> None:
"""Add an AI message to the store"""
has_message = any(isinstance(instance, AIMessage) for instance in self.messages)
if has_message:
self.__update_ai_message(message)
else:
self.messages.append(AIMessage(content=message))
""" """
def __update_ai_message(self, new_message: str) -> None:
"""
stream out message update
Args:
new_message:
Returns:
"""
for item in self.messages:
if item.type == "ai":
item.content = new_message
def add_view_message(self, message: str) -> None:
"""Add an AI message to the store"""
self.messages.append(ViewMessage(content=message))
""" """
def add_system_message(self, message: str) -> None:
"""Add an AI message to the store"""
self.messages.append(SystemMessage(content=message))
def set_start_time(self, datatime: datetime):
dt_str = datatime.strftime("%Y-%m-%d %H:%M:%S")
self.start_date = dt_str
def clear(self) -> None:
"""Remove all messages from the store"""
self.messages.clear()
self.session_id = None
def get_user_conv(self):
for message in self.messages:
if isinstance(message, HumanMessage):
return message
return None
def get_system_conv(self):
system_convs = []
for message in self.messages:
if isinstance(message, SystemMessage):
system_convs.append(message)
return system_convs
def _conversation_to_dict(once: OnceConversation) -> dict:
start_str: str = ""
if hasattr(once, "start_date") and once.start_date:
if isinstance(once.start_date, datetime):
start_str = once.start_date.strftime("%Y-%m-%d %H:%M:%S")
else:
start_str = once.start_date
return {
"chat_mode": once.chat_mode,
"model_name": once.model_name,
"chat_order": once.chat_order,
"start_date": start_str,
"cost": once.cost if once.cost else 0,
"tokens": once.tokens if once.tokens else 0,
"messages": _messages_to_dict(once.messages),
"param_type": once.param_type,
"param_value": once.param_value,
"user_name": once.user_name,
"sys_code": once.sys_code,
}
def _conversations_to_dict(conversations: List[OnceConversation]) -> List[dict]:
return [_conversation_to_dict(m) for m in conversations]
def _conversation_from_dict(once: dict) -> OnceConversation:
conversation = OnceConversation(
once.get("chat_mode"), once.get("user_name"), once.get("sys_code")
)
conversation.cost = once.get("cost", 0)
conversation.chat_mode = once.get("chat_mode", "chat_normal")
conversation.tokens = once.get("tokens", 0)
conversation.start_date = once.get("start_date", "")
conversation.chat_order = int(once.get("chat_order"))
conversation.param_type = once.get("param_type", "")
conversation.param_value = once.get("param_value", "")
conversation.model_name = once.get("model_name", "proxyllm")
print(once.get("messages"))
conversation.messages = _messages_from_dict(once.get("messages", []))
return conversation