mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-10 05:19:44 +00:00
refactor: The first refactored version for sdk release (#907)
Co-authored-by: chengfangyin2 <chengfangyin3@jd.com>
This commit is contained in:
555
dbgpt/model/parameter.py
Normal file
555
dbgpt/model/parameter.py
Normal file
@@ -0,0 +1,555 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import os
|
||||
from dataclasses import dataclass, field
|
||||
from enum import Enum
|
||||
from typing import Dict, Optional, Union, Tuple
|
||||
|
||||
from dbgpt.model.conversation import conv_templates
|
||||
from dbgpt.util.parameter_utils import BaseParameters
|
||||
|
||||
suported_prompt_templates = ",".join(conv_templates.keys())
|
||||
|
||||
|
||||
class WorkerType(str, Enum):
|
||||
LLM = "llm"
|
||||
TEXT2VEC = "text2vec"
|
||||
|
||||
@staticmethod
|
||||
def values():
|
||||
return [item.value for item in WorkerType]
|
||||
|
||||
@staticmethod
|
||||
def to_worker_key(worker_name, worker_type: Union[str, "WorkerType"]) -> str:
|
||||
"""Generate worker key from worker name and worker type
|
||||
|
||||
Args:
|
||||
worker_name (str): Worker name(eg., chatglm2-6b)
|
||||
worker_type (Union[str, "WorkerType"]): Worker type(eg., 'llm', or [`WorkerType.LLM`])
|
||||
|
||||
Returns:
|
||||
str: Generated worker key
|
||||
"""
|
||||
if "@" in worker_name:
|
||||
raise ValueError(f"Invaild symbol '@' in your worker name {worker_name}")
|
||||
if isinstance(worker_type, WorkerType):
|
||||
worker_type = worker_type.value
|
||||
return f"{worker_name}@{worker_type}"
|
||||
|
||||
@staticmethod
|
||||
def parse_worker_key(worker_key: str) -> Tuple[str, str]:
|
||||
"""Parse worker name and worker type from worker key
|
||||
|
||||
Args:
|
||||
worker_key (str): Worker key generated by [`WorkerType.to_worker_key`]
|
||||
|
||||
Returns:
|
||||
Tuple[str, str]: Worker name and worker type
|
||||
"""
|
||||
return tuple(worker_key.split("@"))
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelControllerParameters(BaseParameters):
|
||||
host: Optional[str] = field(
|
||||
default="0.0.0.0", metadata={"help": "Model Controller deploy host"}
|
||||
)
|
||||
port: Optional[int] = field(
|
||||
default=8000, metadata={"help": "Model Controller deploy port"}
|
||||
)
|
||||
daemon: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Run Model Controller in background"}
|
||||
)
|
||||
log_level: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Logging level",
|
||||
"valid_values": [
|
||||
"FATAL",
|
||||
"ERROR",
|
||||
"WARNING",
|
||||
"WARNING",
|
||||
"INFO",
|
||||
"DEBUG",
|
||||
"NOTSET",
|
||||
],
|
||||
},
|
||||
)
|
||||
log_file: Optional[str] = field(
|
||||
default="dbgpt_model_controller.log",
|
||||
metadata={
|
||||
"help": "The filename to store log",
|
||||
},
|
||||
)
|
||||
tracer_file: Optional[str] = field(
|
||||
default="dbgpt_model_controller_tracer.jsonl",
|
||||
metadata={
|
||||
"help": "The filename to store tracer span records",
|
||||
},
|
||||
)
|
||||
tracer_storage_cls: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The storage class to storage tracer span records",
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelAPIServerParameters(BaseParameters):
|
||||
host: Optional[str] = field(
|
||||
default="0.0.0.0", metadata={"help": "Model API server deploy host"}
|
||||
)
|
||||
port: Optional[int] = field(
|
||||
default=8100, metadata={"help": "Model API server deploy port"}
|
||||
)
|
||||
daemon: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Run Model API server in background"}
|
||||
)
|
||||
controller_addr: Optional[str] = field(
|
||||
default="http://127.0.0.1:8000",
|
||||
metadata={"help": "The Model controller address to connect"},
|
||||
)
|
||||
|
||||
api_keys: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Optional list of comma separated API keys"},
|
||||
)
|
||||
|
||||
log_level: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Logging level",
|
||||
"valid_values": [
|
||||
"FATAL",
|
||||
"ERROR",
|
||||
"WARNING",
|
||||
"WARNING",
|
||||
"INFO",
|
||||
"DEBUG",
|
||||
"NOTSET",
|
||||
],
|
||||
},
|
||||
)
|
||||
log_file: Optional[str] = field(
|
||||
default="dbgpt_model_apiserver.log",
|
||||
metadata={
|
||||
"help": "The filename to store log",
|
||||
},
|
||||
)
|
||||
tracer_file: Optional[str] = field(
|
||||
default="dbgpt_model_apiserver_tracer.jsonl",
|
||||
metadata={
|
||||
"help": "The filename to store tracer span records",
|
||||
},
|
||||
)
|
||||
tracer_storage_cls: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The storage class to storage tracer span records",
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class BaseModelParameters(BaseParameters):
|
||||
model_name: str = field(metadata={"help": "Model name", "tags": "fixed"})
|
||||
model_path: str = field(metadata={"help": "Model path", "tags": "fixed"})
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelWorkerParameters(BaseModelParameters):
|
||||
worker_type: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"valid_values": WorkerType.values(), "help": "Worker type"},
|
||||
)
|
||||
worker_class: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Model worker class, dbgpt.model.cluster.DefaultModelWorker"},
|
||||
)
|
||||
model_type: Optional[str] = field(
|
||||
default="huggingface",
|
||||
metadata={
|
||||
"help": "Model type: huggingface, llama.cpp, proxy and vllm",
|
||||
"tags": "fixed",
|
||||
},
|
||||
)
|
||||
host: Optional[str] = field(
|
||||
default="0.0.0.0", metadata={"help": "Model worker deploy host"}
|
||||
)
|
||||
|
||||
port: Optional[int] = field(
|
||||
default=8001, metadata={"help": "Model worker deploy port"}
|
||||
)
|
||||
daemon: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Run Model Worker in background"}
|
||||
)
|
||||
limit_model_concurrency: Optional[int] = field(
|
||||
default=5, metadata={"help": "Model concurrency limit"}
|
||||
)
|
||||
standalone: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Standalone mode. If True, embedded Run ModelController"},
|
||||
)
|
||||
register: Optional[bool] = field(
|
||||
default=True, metadata={"help": "Register current worker to model controller"}
|
||||
)
|
||||
worker_register_host: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The ip address of current worker to register to ModelController. If None, the address is automatically determined"
|
||||
},
|
||||
)
|
||||
controller_addr: Optional[str] = field(
|
||||
default=None, metadata={"help": "The Model controller address to register"}
|
||||
)
|
||||
send_heartbeat: Optional[bool] = field(
|
||||
default=True, metadata={"help": "Send heartbeat to model controller"}
|
||||
)
|
||||
heartbeat_interval: Optional[int] = field(
|
||||
default=20, metadata={"help": "The interval for sending heartbeats (seconds)"}
|
||||
)
|
||||
|
||||
log_level: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Logging level",
|
||||
"valid_values": [
|
||||
"FATAL",
|
||||
"ERROR",
|
||||
"WARNING",
|
||||
"WARNING",
|
||||
"INFO",
|
||||
"DEBUG",
|
||||
"NOTSET",
|
||||
],
|
||||
},
|
||||
)
|
||||
log_file: Optional[str] = field(
|
||||
default="dbgpt_model_worker_manager.log",
|
||||
metadata={
|
||||
"help": "The filename to store log",
|
||||
},
|
||||
)
|
||||
tracer_file: Optional[str] = field(
|
||||
default="dbgpt_model_worker_manager_tracer.jsonl",
|
||||
metadata={
|
||||
"help": "The filename to store tracer span records",
|
||||
},
|
||||
)
|
||||
tracer_storage_cls: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The storage class to storage tracer span records",
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class BaseEmbeddingModelParameters(BaseModelParameters):
|
||||
def build_kwargs(self, **kwargs) -> Dict:
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class EmbeddingModelParameters(BaseEmbeddingModelParameters):
|
||||
device: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Device to run model. If None, the device is automatically determined"
|
||||
},
|
||||
)
|
||||
|
||||
normalize_embeddings: Optional[bool] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Determines whether the model's embeddings should be normalized."
|
||||
},
|
||||
)
|
||||
|
||||
def build_kwargs(self, **kwargs) -> Dict:
|
||||
model_kwargs, encode_kwargs = None, None
|
||||
if self.device:
|
||||
model_kwargs = {"device": self.device}
|
||||
if self.normalize_embeddings:
|
||||
encode_kwargs = {"normalize_embeddings": self.normalize_embeddings}
|
||||
if model_kwargs:
|
||||
kwargs["model_kwargs"] = model_kwargs
|
||||
if encode_kwargs:
|
||||
kwargs["encode_kwargs"] = encode_kwargs
|
||||
return kwargs
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelParameters(BaseModelParameters):
|
||||
device: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Device to run model. If None, the device is automatically determined"
|
||||
},
|
||||
)
|
||||
model_type: Optional[str] = field(
|
||||
default="huggingface",
|
||||
metadata={
|
||||
"help": "Model type: huggingface, llama.cpp, proxy and vllm",
|
||||
"tags": "fixed",
|
||||
},
|
||||
)
|
||||
prompt_template: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": f"Prompt template. If None, the prompt template is automatically determined from model path, supported template: {suported_prompt_templates}"
|
||||
},
|
||||
)
|
||||
max_context_size: Optional[int] = field(
|
||||
default=4096, metadata={"help": "Maximum context size"}
|
||||
)
|
||||
|
||||
num_gpus: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The number of gpus you expect to use, if it is empty, use all of them as much as possible"
|
||||
},
|
||||
)
|
||||
max_gpu_memory: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The maximum memory limit of each GPU, only valid in multi-GPU configuration"
|
||||
},
|
||||
)
|
||||
cpu_offloading: Optional[bool] = field(
|
||||
default=False, metadata={"help": "CPU offloading"}
|
||||
)
|
||||
load_8bit: Optional[bool] = field(
|
||||
default=False, metadata={"help": "8-bit quantization"}
|
||||
)
|
||||
load_4bit: Optional[bool] = field(
|
||||
default=False, metadata={"help": "4-bit quantization"}
|
||||
)
|
||||
quant_type: Optional[str] = field(
|
||||
default="nf4",
|
||||
metadata={
|
||||
"valid_values": ["nf4", "fp4"],
|
||||
"help": "Quantization datatypes, `fp4` (four bit float) and `nf4` (normal four bit float), only valid when load_4bit=True",
|
||||
},
|
||||
)
|
||||
use_double_quant: Optional[bool] = field(
|
||||
default=True,
|
||||
metadata={"help": "Nested quantization, only valid when load_4bit=True"},
|
||||
)
|
||||
compute_dtype: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"valid_values": ["bfloat16", "float16", "float32"],
|
||||
"help": "Model compute type",
|
||||
},
|
||||
)
|
||||
trust_remote_code: Optional[bool] = field(
|
||||
default=True, metadata={"help": "Trust remote code"}
|
||||
)
|
||||
verbose: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Show verbose output."}
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class LlamaCppModelParameters(ModelParameters):
|
||||
seed: Optional[int] = field(
|
||||
default=-1, metadata={"help": "Random seed for llama-cpp models. -1 for random"}
|
||||
)
|
||||
n_threads: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Number of threads to use. If None, the number of threads is automatically determined"
|
||||
},
|
||||
)
|
||||
n_batch: Optional[int] = field(
|
||||
default=512,
|
||||
metadata={
|
||||
"help": "Maximum number of prompt tokens to batch together when calling llama_eval"
|
||||
},
|
||||
)
|
||||
n_gpu_layers: Optional[int] = field(
|
||||
default=1000000000,
|
||||
metadata={
|
||||
"help": "Number of layers to offload to the GPU, Set this to 1000000000 to offload all layers to the GPU."
|
||||
},
|
||||
)
|
||||
n_gqa: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "Grouped-query attention. Must be 8 for llama-2 70b."},
|
||||
)
|
||||
rms_norm_eps: Optional[float] = field(
|
||||
default=5e-06, metadata={"help": "5e-6 is a good value for llama-2 models."}
|
||||
)
|
||||
cache_capacity: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. "
|
||||
},
|
||||
)
|
||||
prefer_cpu: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": "If a GPU is available, it will be preferred by default, unless prefer_cpu=False is configured."
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ProxyModelParameters(BaseModelParameters):
|
||||
proxy_server_url: str = field(
|
||||
metadata={
|
||||
"help": "Proxy server url, such as: https://api.openai.com/v1/chat/completions"
|
||||
},
|
||||
)
|
||||
|
||||
proxy_api_key: str = field(
|
||||
metadata={"tags": "privacy", "help": "The api key of current proxy LLM"},
|
||||
)
|
||||
|
||||
proxy_api_base: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The base api address, such as: https://api.openai.com/v1. If None, we will use proxy_api_base first"
|
||||
},
|
||||
)
|
||||
|
||||
proxy_api_app_id: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The app id for current proxy LLM(Just for spark proxy LLM now)."
|
||||
},
|
||||
)
|
||||
|
||||
proxy_api_secret: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The app secret for current proxy LLM(Just for spark proxy LLM now)."
|
||||
},
|
||||
)
|
||||
|
||||
proxy_api_type: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The api type of current proxy the current proxy model, if you use Azure, it can be: azure"
|
||||
},
|
||||
)
|
||||
|
||||
proxy_api_version: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "The api version of current proxy the current model"},
|
||||
)
|
||||
|
||||
http_proxy: Optional[str] = field(
|
||||
default=os.environ.get("http_proxy") or os.environ.get("https_proxy"),
|
||||
metadata={"help": "The http or https proxy to use openai"},
|
||||
)
|
||||
|
||||
proxyllm_backend: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The model name actually pass to current proxy server url, such as gpt-3.5-turbo, gpt-4, chatglm_pro, chatglm_std and so on"
|
||||
},
|
||||
)
|
||||
model_type: Optional[str] = field(
|
||||
default="proxy",
|
||||
metadata={
|
||||
"help": "Model type: huggingface, llama.cpp, proxy and vllm",
|
||||
"tags": "fixed",
|
||||
},
|
||||
)
|
||||
device: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Device to run model. If None, the device is automatically determined"
|
||||
},
|
||||
)
|
||||
prompt_template: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": f"Prompt template. If None, the prompt template is automatically determined from model path, supported template: {suported_prompt_templates}"
|
||||
},
|
||||
)
|
||||
max_context_size: Optional[int] = field(
|
||||
default=4096, metadata={"help": "Maximum context size"}
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ProxyEmbeddingParameters(BaseEmbeddingModelParameters):
|
||||
proxy_server_url: str = field(
|
||||
metadata={
|
||||
"help": "Proxy base url(OPENAI_API_BASE), such as https://api.openai.com/v1"
|
||||
},
|
||||
)
|
||||
proxy_api_key: str = field(
|
||||
metadata={
|
||||
"tags": "privacy",
|
||||
"help": "The api key of the current embedding model(OPENAI_API_KEY)",
|
||||
},
|
||||
)
|
||||
device: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Device to run model. Not working for proxy embedding model"},
|
||||
)
|
||||
proxy_api_type: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The api type of current proxy the current embedding model(OPENAI_API_TYPE), if you use Azure, it can be: azure"
|
||||
},
|
||||
)
|
||||
proxy_api_version: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The api version of current proxy the current embedding model(OPENAI_API_VERSION)"
|
||||
},
|
||||
)
|
||||
proxy_backend: Optional[str] = field(
|
||||
default="text-embedding-ada-002",
|
||||
metadata={
|
||||
"help": "The model name actually pass to current proxy server url, such as text-embedding-ada-002"
|
||||
},
|
||||
)
|
||||
|
||||
proxy_deployment: Optional[str] = field(
|
||||
default="text-embedding-ada-002",
|
||||
metadata={"help": "Tto support Azure OpenAI Service custom deployment names"},
|
||||
)
|
||||
|
||||
def build_kwargs(self, **kwargs) -> Dict:
|
||||
params = {
|
||||
"openai_api_base": self.proxy_server_url,
|
||||
"openai_api_key": self.proxy_api_key,
|
||||
"openai_api_type": self.proxy_api_type if self.proxy_api_type else None,
|
||||
"openai_api_version": self.proxy_api_version
|
||||
if self.proxy_api_version
|
||||
else None,
|
||||
"model": self.proxy_backend,
|
||||
"deployment": self.proxy_deployment
|
||||
if self.proxy_deployment
|
||||
else self.proxy_backend,
|
||||
}
|
||||
for k, v in kwargs:
|
||||
params[k] = v
|
||||
return params
|
||||
|
||||
|
||||
_EMBEDDING_PARAMETER_CLASS_TO_NAME_CONFIG = {
|
||||
ProxyEmbeddingParameters: "proxy_openai,proxy_azure"
|
||||
}
|
||||
|
||||
EMBEDDING_NAME_TO_PARAMETER_CLASS_CONFIG = {}
|
||||
|
||||
|
||||
def _update_embedding_config():
|
||||
global EMBEDDING_NAME_TO_PARAMETER_CLASS_CONFIG
|
||||
for param_cls, models in _EMBEDDING_PARAMETER_CLASS_TO_NAME_CONFIG.items():
|
||||
models = [m.strip() for m in models.split(",")]
|
||||
for model in models:
|
||||
if model not in EMBEDDING_NAME_TO_PARAMETER_CLASS_CONFIG:
|
||||
EMBEDDING_NAME_TO_PARAMETER_CLASS_CONFIG[model] = param_cls
|
||||
|
||||
|
||||
_update_embedding_config()
|
Reference in New Issue
Block a user