mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-10-28 21:28:54 +00:00
refactor: The first refactored version for sdk release (#907)
Co-authored-by: chengfangyin2 <chengfangyin3@jd.com>
This commit is contained in:
229
dbgpt/util/utils.py
Normal file
229
dbgpt/util/utils.py
Normal file
@@ -0,0 +1,229 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
import logging
|
||||
import logging.handlers
|
||||
from typing import Any, List
|
||||
|
||||
import os
|
||||
import sys
|
||||
import asyncio
|
||||
|
||||
from dbgpt.configs.model_config import LOGDIR
|
||||
|
||||
server_error_msg = (
|
||||
"**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
|
||||
)
|
||||
|
||||
handler = None
|
||||
|
||||
|
||||
def _get_logging_level() -> str:
|
||||
return os.getenv("DBGPT_LOG_LEVEL", "INFO")
|
||||
|
||||
|
||||
def setup_logging_level(logging_level=None, logger_name: str = None):
|
||||
if not logging_level:
|
||||
logging_level = _get_logging_level()
|
||||
if type(logging_level) is str:
|
||||
logging_level = logging.getLevelName(logging_level.upper())
|
||||
if logger_name:
|
||||
logger = logging.getLogger(logger_name)
|
||||
logger.setLevel(logging_level)
|
||||
else:
|
||||
logging.basicConfig(level=logging_level, encoding="utf-8")
|
||||
|
||||
|
||||
def setup_logging(logger_name: str, logging_level=None, logger_filename: str = None):
|
||||
if not logging_level:
|
||||
logging_level = _get_logging_level()
|
||||
logger = _build_logger(logger_name, logging_level, logger_filename)
|
||||
try:
|
||||
import coloredlogs
|
||||
|
||||
color_level = logging_level if logging_level else "INFO"
|
||||
coloredlogs.install(level=color_level, logger=logger)
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
def get_gpu_memory(max_gpus=None):
|
||||
import torch
|
||||
|
||||
gpu_memory = []
|
||||
num_gpus = (
|
||||
torch.cuda.device_count()
|
||||
if max_gpus is None
|
||||
else min(max_gpus, torch.cuda.device_count())
|
||||
)
|
||||
|
||||
for gpu_id in range(num_gpus):
|
||||
with torch.cuda.device(gpu_id):
|
||||
device = torch.cuda.current_device()
|
||||
gpu_properties = torch.cuda.get_device_properties(device)
|
||||
total_memory = gpu_properties.total_memory / (1024**3)
|
||||
allocated_memory = torch.cuda.memory_allocated() / (1024**3)
|
||||
available_memory = total_memory - allocated_memory
|
||||
gpu_memory.append(available_memory)
|
||||
return gpu_memory
|
||||
|
||||
|
||||
def _build_logger(logger_name, logging_level=None, logger_filename: str = None):
|
||||
global handler
|
||||
|
||||
formatter = logging.Formatter(
|
||||
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
||||
datefmt="%Y-%m-%d %H:%M:%S",
|
||||
)
|
||||
|
||||
# Set the format of root handlers
|
||||
if not logging.getLogger().handlers:
|
||||
setup_logging_level(logging_level=logging_level)
|
||||
logging.getLogger().handlers[0].setFormatter(formatter)
|
||||
|
||||
# Redirect stdout and stderr to loggers
|
||||
# stdout_logger = logging.getLogger("stdout")
|
||||
# stdout_logger.setLevel(logging.INFO)
|
||||
# sl_1 = StreamToLogger(stdout_logger, logging.INFO)
|
||||
# sys.stdout = sl_1
|
||||
#
|
||||
# stderr_logger = logging.getLogger("stderr")
|
||||
# stderr_logger.setLevel(logging.ERROR)
|
||||
# sl = StreamToLogger(stderr_logger, logging.ERROR)
|
||||
# sys.stderr = sl
|
||||
|
||||
# Add a file handler for all loggers
|
||||
if handler is None and logger_filename:
|
||||
os.makedirs(LOGDIR, exist_ok=True)
|
||||
filename = os.path.join(LOGDIR, logger_filename)
|
||||
handler = logging.handlers.TimedRotatingFileHandler(
|
||||
filename, when="D", utc=True
|
||||
)
|
||||
handler.setFormatter(formatter)
|
||||
|
||||
for name, item in logging.root.manager.loggerDict.items():
|
||||
if isinstance(item, logging.Logger):
|
||||
item.addHandler(handler)
|
||||
# Get logger
|
||||
logger = logging.getLogger(logger_name)
|
||||
setup_logging_level(logging_level=logging_level, logger_name=logger_name)
|
||||
|
||||
return logger
|
||||
|
||||
|
||||
class StreamToLogger(object):
|
||||
"""
|
||||
Fake file-like stream object that redirects writes to a logger instance.
|
||||
"""
|
||||
|
||||
def __init__(self, logger, log_level=logging.INFO):
|
||||
self.terminal = sys.stdout
|
||||
self.logger = logger
|
||||
self.log_level = log_level
|
||||
self.linebuf = ""
|
||||
|
||||
def __getattr__(self, attr):
|
||||
return getattr(self.terminal, attr)
|
||||
|
||||
def write(self, buf):
|
||||
temp_linebuf = self.linebuf + buf
|
||||
self.linebuf = ""
|
||||
for line in temp_linebuf.splitlines(True):
|
||||
# From the io.TextIOWrapper docs:
|
||||
# On output, if newline is None, any '\n' characters written
|
||||
# are translated to the system default line separator.
|
||||
# By default sys.stdout.write() expects '\n' newlines and then
|
||||
# translates them so this is still cross platform.
|
||||
if line[-1] == "\n":
|
||||
encoded_message = line.encode("utf-8", "ignore").decode("utf-8")
|
||||
self.logger.log(self.log_level, encoded_message.rstrip())
|
||||
else:
|
||||
self.linebuf += line
|
||||
|
||||
def flush(self):
|
||||
if self.linebuf != "":
|
||||
encoded_message = self.linebuf.encode("utf-8", "ignore").decode("utf-8")
|
||||
self.logger.log(self.log_level, encoded_message.rstrip())
|
||||
self.linebuf = ""
|
||||
|
||||
|
||||
def disable_torch_init():
|
||||
"""
|
||||
Disable the redundant torch default initialization to accelerate model creation.
|
||||
"""
|
||||
import torch
|
||||
|
||||
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
||||
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
||||
|
||||
|
||||
def pretty_print_semaphore(semaphore):
|
||||
if semaphore is None:
|
||||
return "None"
|
||||
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
|
||||
|
||||
|
||||
def get_or_create_event_loop() -> asyncio.BaseEventLoop:
|
||||
loop = None
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
assert loop is not None
|
||||
return loop
|
||||
except RuntimeError as e:
|
||||
if not "no running event loop" in str(e) and not "no current event loop" in str(
|
||||
e
|
||||
):
|
||||
raise e
|
||||
logging.warning("Cant not get running event loop, create new event loop now")
|
||||
return asyncio.get_event_loop_policy().new_event_loop()
|
||||
|
||||
|
||||
def logging_str_to_uvicorn_level(log_level_str):
|
||||
level_str_mapping = {
|
||||
"CRITICAL": "critical",
|
||||
"ERROR": "error",
|
||||
"WARNING": "warning",
|
||||
"INFO": "info",
|
||||
"DEBUG": "debug",
|
||||
"NOTSET": "info",
|
||||
}
|
||||
return level_str_mapping.get(log_level_str.upper(), "info")
|
||||
|
||||
|
||||
class EndpointFilter(logging.Filter):
|
||||
"""Disable access log on certain endpoint
|
||||
|
||||
source: https://github.com/encode/starlette/issues/864#issuecomment-1254987630
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
path: str,
|
||||
*args: Any,
|
||||
**kwargs: Any,
|
||||
):
|
||||
super().__init__(*args, **kwargs)
|
||||
self._path = path
|
||||
|
||||
def filter(self, record: logging.LogRecord) -> bool:
|
||||
return record.getMessage().find(self._path) == -1
|
||||
|
||||
|
||||
def setup_http_service_logging(exclude_paths: List[str] = None):
|
||||
"""Setup http service logging
|
||||
|
||||
Now just disable some logs
|
||||
|
||||
Args:
|
||||
exclude_paths (List[str]): The paths to disable log
|
||||
"""
|
||||
if not exclude_paths:
|
||||
# Not show heartbeat log
|
||||
exclude_paths = ["/api/controller/heartbeat"]
|
||||
uvicorn_logger = logging.getLogger("uvicorn.access")
|
||||
if uvicorn_logger:
|
||||
for path in exclude_paths:
|
||||
uvicorn_logger.addFilter(EndpointFilter(path=path))
|
||||
httpx_logger = logging.getLogger("httpx")
|
||||
if httpx_logger:
|
||||
httpx_logger.setLevel(logging.WARNING)
|
||||
Reference in New Issue
Block a user