doc:llm deploy docs

This commit is contained in:
aries_ckt
2023-10-19 12:04:49 +08:00
parent 5266c30a10
commit cdb6fdd9bb
4 changed files with 338 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

View File

@@ -0,0 +1,98 @@
Standalone Deployment
==================================
(standalone-index)=
### Install Prepare
```commandline
git clone https://github.com/eosphoros-ai/DB-GPT.git
cd DB-GPT
```
### Create conda environment
```commandline
conda create -n dbgpt_env python=3.10
conda activate dbgpt_env
```
### Install Default Requirements
```commandline
# Install Default Requirements
pip install -e ".[default]"
```
### Download and Prepare LLM Model and Embedding Model
```{tip}
If you don't have high performance hardware server
```
you can use openai api, tongyi api , bard api, etc.
```commandline
mkdir models && cd models
# download embedding model, eg: text2vec-large-chinese
git clone https://huggingface.co/GanymedeNil/text2vec-large-chinese
```
set proxy api in .env
```commandline
#set LLM_MODEL TYPE
LLM_MODEL=proxyllm
#set your Proxy Api key and Proxy Server url
PROXY_API_KEY={your-openai-sk}
PROXY_SERVER_URL=https://api.openai.com/v1/chat/completions
```
```{tip}
If you have high performance hardware server
```
```commandline
mkdir models && cd models
# # download embedding model, eg: vicuna-13b-v1.5 or
git clone https://huggingface.co/lmsys/vicuna-13b-v1.5
# download embedding model, eg: text2vec-large-chinese
git clone https://huggingface.co/GanymedeNil/text2vec-large-chinese
popd
```
### Start all services with a single command.
```commandline
LLM_MODEL=vicuna-13b-v1.5
dbgpt start webserver --port 6006
```
By default, the "dbgpt start webserver" command will start the Webserver, Model Controller, and Model Worker in a single Python process. Here, we specify the service to be started on port 6006.
### View and validate the model service in the command line, you can use the following commands
##### 1.list the started model services and deployed Model Workers, you can use the following command
```commandline
dbgpt model list
```
output is:
```commandline
+-----------------+------------+------------+------+---------+---------+-----------------+----------------------------+
| Model Name | Model Type | Host | Port | Healthy | Enabled | Prompt Template | Last Heartbeat |
+-----------------+------------+------------+------+---------+---------+-----------------+----------------------------+
| vicuna-13b-v1.5 | llm | 172.17.0.9 | 6006 | True | True | | 2023-10-16T19:49:59.201313 |
| WorkerManager | service | 172.17.0.9 | 6006 | True | True | | 2023-10-16T19:49:59.246756 |
+-----------------+------------+------------+------+---------+---------+-----------------+----------------------------+
```
The WorkerManager is the management process for Model Workers
##### validate the deployed model in the command line, you can use the following command
```commandline
dbgpt model chat --model_name vicuna-13b-v1.5
```
Then an interactive page will be launched where you can have a conversation with the deployed LLM in the terminal.
```commandline
Chatbot started with model vicuna-13b-v1.5. Type 'exit' to leave the chat.
You: Hello
Bot: Hello! How can I assist you today?
You:
```