mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-09 21:08:59 +00:00
feature:add knowledge embedding
This commit is contained in:
@@ -11,6 +11,9 @@ import gradio as gr
|
||||
import datetime
|
||||
import requests
|
||||
from urllib.parse import urljoin
|
||||
|
||||
from langchain import PromptTemplate
|
||||
|
||||
from pilot.configs.model_config import DB_SETTINGS, KNOWLEDGE_UPLOAD_ROOT_PATH, LLM_MODEL_CONFIG
|
||||
from pilot.server.vectordb_qa import KnownLedgeBaseQA
|
||||
from pilot.connections.mysql import MySQLOperator
|
||||
@@ -32,7 +35,7 @@ from pilot.conversation import (
|
||||
conv_templates,
|
||||
conversation_types,
|
||||
conversation_sql_mode,
|
||||
SeparatorStyle
|
||||
SeparatorStyle, conv_qa_prompt_template
|
||||
)
|
||||
|
||||
from pilot.utils import (
|
||||
@@ -57,6 +60,8 @@ models = []
|
||||
dbs = []
|
||||
vs_list = ["新建知识库"] + get_vector_storelist()
|
||||
autogpt = False
|
||||
vector_store_client = None
|
||||
vector_store_name = {"vs_name": ""}
|
||||
|
||||
priority = {
|
||||
"vicuna-13b": "aaa"
|
||||
@@ -217,16 +222,28 @@ def http_bot(state, mode, sql_mode, db_selector, temperature, max_new_tokens, re
|
||||
state.messages[0][1] = ""
|
||||
state.messages[-2][1] = follow_up_prompt
|
||||
|
||||
|
||||
if mode == conversation_types["default_knownledge"] and not db_selector:
|
||||
query = state.messages[-2][1]
|
||||
knqa = KnownLedgeBaseQA()
|
||||
state.messages[-2][1] = knqa.get_similar_answer(query)
|
||||
|
||||
|
||||
prompt = state.get_prompt()
|
||||
|
||||
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
|
||||
if mode == conversation_types["custome"] and not db_selector:
|
||||
persist_dir = os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vector_store_name["vs_name"] + ".vectordb")
|
||||
print("向量数据库持久化地址: ", persist_dir)
|
||||
knowledge_embedding_client = KnowledgeEmbedding(file_path="", model_name=LLM_MODEL_CONFIG["sentence-transforms"], vector_store_config={"vector_store_name": vector_store_name["vs_name"],
|
||||
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH})
|
||||
query = state.messages[-2][1]
|
||||
docs = knowledge_embedding_client.similar_search(query, 1)
|
||||
context = [d.page_content for d in docs]
|
||||
prompt_template = PromptTemplate(
|
||||
template=conv_qa_prompt_template,
|
||||
input_variables=["context", "question"]
|
||||
)
|
||||
result = prompt_template.format(context="\n".join(context), question=query)
|
||||
state.messages[-2][1] = result
|
||||
prompt = state.get_prompt()
|
||||
state.messages[-2][1] = query
|
||||
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
|
||||
|
||||
# Make requests
|
||||
payload = {
|
||||
@@ -437,8 +454,9 @@ def build_single_model_ui():
|
||||
|
||||
load_file_button = gr.Button("上传并加载到知识库")
|
||||
with gr.Tab("上传文件夹"):
|
||||
folder_files = gr.File(label="添加文件",
|
||||
file_count="directory",
|
||||
folder_files = gr.File(label="添加文件夹",
|
||||
accept_multiple_files=True,
|
||||
file_count="directory",
|
||||
show_label=False)
|
||||
load_folder_button = gr.Button("上传并加载到知识库")
|
||||
|
||||
@@ -483,15 +501,17 @@ def build_single_model_ui():
|
||||
[state, mode, sql_mode, db_selector, temperature, max_output_tokens],
|
||||
[state, chatbot] + btn_list
|
||||
)
|
||||
vs_add.click(fn=save_vs_name, show_progress=True,
|
||||
inputs=[vs_name],
|
||||
outputs=[vs_name])
|
||||
load_file_button.click(fn=knowledge_embedding_store,
|
||||
show_progress=True,
|
||||
inputs=[vs_name, files],
|
||||
outputs=[vs_name])
|
||||
# load_folder_button.click(get_vector_store,
|
||||
# show_progress=True,
|
||||
# inputs=[vs_name, folder_files, 100 , chatbot, vs_add,
|
||||
# vs_add],
|
||||
# outputs=["db-out", folder_files, chatbot])
|
||||
load_folder_button.click(fn=knowledge_embedding_store,
|
||||
show_progress=True,
|
||||
inputs=[vs_name, folder_files],
|
||||
outputs=[vs_name])
|
||||
return state, chatbot, textbox, send_btn, button_row, parameter_row
|
||||
|
||||
|
||||
@@ -531,6 +551,10 @@ def build_webdemo():
|
||||
return demo
|
||||
|
||||
|
||||
def save_vs_name(vs_name):
|
||||
vector_store_name["vs_name"] = vs_name
|
||||
return vs_name
|
||||
|
||||
def knowledge_embedding_store(vs_id, files):
|
||||
# vs_path = os.path.join(VS_ROOT_PATH, vs_id)
|
||||
if not os.path.exists(os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vs_id)):
|
||||
@@ -538,10 +562,15 @@ def knowledge_embedding_store(vs_id, files):
|
||||
for file in files:
|
||||
filename = os.path.split(file.name)[-1]
|
||||
shutil.move(file.name, os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vs_id, filename))
|
||||
knowledge_embedding_client = KnowledgeEmbedding(
|
||||
file_path=os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vs_id, filename),
|
||||
model_name=LLM_MODEL_CONFIG["sentence-transforms"],
|
||||
vector_store_config={
|
||||
"vector_store_name": vector_store_name["vs_name"],
|
||||
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH})
|
||||
knowledge_embedding_client.knowledge_embedding()
|
||||
|
||||
|
||||
knowledge_embedding = KnowledgeEmbedding.knowledge_embedding(os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vs_id, filename), LLM_MODEL_CONFIG["sentence-transforms"], {"vector_store_name": vs_id,
|
||||
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH})
|
||||
knowledge_embedding.source_embedding()
|
||||
logger.info("knowledge embedding success")
|
||||
return os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vs_id, vs_id + ".vectordb")
|
||||
|
||||
|
Reference in New Issue
Block a user