mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-29 13:34:14 +00:00
feature:add knowledge embedding
This commit is contained in:
@@ -4,17 +4,31 @@ from pilot.source_embedding.pdf_embedding import PDFEmbedding
|
||||
|
||||
|
||||
class KnowledgeEmbedding:
|
||||
@staticmethod
|
||||
def knowledge_embedding(file_path:str, model_name, vector_store_config):
|
||||
if file_path.endswith(".pdf"):
|
||||
embedding = PDFEmbedding(file_path=file_path, model_name=model_name,
|
||||
vector_store_config=vector_store_config)
|
||||
elif file_path.endswith(".md"):
|
||||
embedding = MarkdownEmbedding(file_path=file_path, model_name=model_name,
|
||||
vector_store_config=vector_store_config)
|
||||
def __init__(self, file_path, model_name, vector_store_config):
|
||||
"""Initialize with Loader url, model_name, vector_store_config"""
|
||||
self.file_path = file_path
|
||||
self.model_name = model_name
|
||||
self.vector_store_config = vector_store_config
|
||||
self.vector_store_type = "default"
|
||||
self.knowledge_embedding_client = self.init_knowledge_embedding()
|
||||
|
||||
elif file_path.endswith(".csv"):
|
||||
embedding = CSVEmbedding(file_path=file_path, model_name=model_name,
|
||||
vector_store_config=vector_store_config)
|
||||
def knowledge_embedding(self):
|
||||
self.knowledge_embedding_client.source_embedding()
|
||||
|
||||
return embedding
|
||||
def init_knowledge_embedding(self):
|
||||
if self.file_path.endswith(".pdf"):
|
||||
embedding = PDFEmbedding(file_path=self.file_path, model_name=self.model_name,
|
||||
vector_store_config=self.vector_store_config)
|
||||
elif self.file_path.endswith(".md"):
|
||||
embedding = MarkdownEmbedding(file_path=self.file_path, model_name=self.model_name, vector_store_config=self.vector_store_config)
|
||||
|
||||
elif self.file_path.endswith(".csv"):
|
||||
embedding = CSVEmbedding(file_path=self.file_path, model_name=self.model_name,
|
||||
vector_store_config=self.vector_store_config)
|
||||
elif self.vector_store_type == "default":
|
||||
embedding = MarkdownEmbedding(file_path=self.file_path, model_name=self.model_name, vector_store_config=self.vector_store_config)
|
||||
|
||||
return embedding
|
||||
|
||||
def similar_search(self, text, topk):
|
||||
return self.knowledge_embedding_client.similar_search(text, topk)
|
Reference in New Issue
Block a user