Merge branch 'llm_fxp' of https://github.com/csunny/DB-GPT into llm_fxp

This commit is contained in:
csunny 2023-06-09 16:20:11 +08:00
commit d587f59143
8 changed files with 48 additions and 27 deletions

View File

@ -4,13 +4,25 @@
import torch
from typing import List
from functools import cache
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, BitsAndBytesConfig
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoTokenizer,
LlamaTokenizer,
BitsAndBytesConfig,
)
from pilot.configs.model_config import DEVICE
from pilot.configs.config import Config
bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype="bfloat16", bnb_4bit_use_double_quant=False)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="bfloat16",
bnb_4bit_use_double_quant=False,
)
CFG = Config()
class BaseLLMAdaper:
"""The Base class for multi model, in our project.
We will support those model, which performance resemble ChatGPT"""
@ -116,14 +128,14 @@ class FalconAdapater(BaseLLMAdaper):
quantization_config=bnb_config,
device_map={"": 0},
trust_remote_code=True,
**from_pretrained_kwagrs
**from_pretrained_kwagrs,
)
else:
model = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
device_map={"": 0},
**from_pretrained_kwagrs
**from_pretrained_kwagrs,
)
return model, tokenizer

View File

@ -51,7 +51,10 @@ def chatglm_generate_stream(
# else:
# once_conversation.append(f"""###system:{message} """)
try:
query = messages[-2].split("human:")[1]
except IndexError:
query = messages[-3].split("human:")[1]
print("Query Message: ", query)
# output = ""
# i = 0

View File

@ -1,5 +1,6 @@
import torch
@torch.inference_mode()
def generate_stream(
model, tokenizer, params, device, context_len=42048, stream_interval=2
@ -37,7 +38,6 @@ def generate_stream(
token = int(torch.multinomial(probs, num_samples=1))
output_ids.append(token)
if token == tokenizer.eos_token_id:
stopped = True
else:
@ -45,7 +45,11 @@ def generate_stream(
if i % stream_interval == 0 or i == max_new_tokens - 1 or stopped:
tmp_output_ids = output_ids[input_echo_len:]
output = tokenizer.decode(tmp_output_ids, skip_special_tokens=True, spaces_between_special_tokens=False,)
output = tokenizer.decode(
tmp_output_ids,
skip_special_tokens=True,
spaces_between_special_tokens=False,
)
pos = output.rfind(stop_str, l_prompt)
if pos != -1:
output = output[:pos]

View File

@ -106,6 +106,7 @@ class FalconChatAdapter(BaseChatAdpter):
return falcon_generate_output
class ProxyllmChatAdapter(BaseChatAdpter):
def match(self, model_path: str):
return "proxyllm" in model_path
@ -117,7 +118,6 @@ class ProxyllmChatAdapter(BaseChatAdpter):
class GorillaChatAdapter(BaseChatAdpter):
def match(self, model_path: str):
return "gorilla" in model_path

View File

@ -28,7 +28,9 @@ class PDFEmbedding(SourceEmbedding):
# textsplitter = CHNDocumentSplitter(
# pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE
# )
textsplitter = SpacyTextSplitter(pipeline='zh_core_web_sm', chunk_size=1000, chunk_overlap=200)
textsplitter = SpacyTextSplitter(
pipeline="zh_core_web_sm", chunk_size=1000, chunk_overlap=200
)
return loader.load_and_split(textsplitter)
@register