diff --git a/README.zh.md b/README.zh.md index f04e48a66..9e33815bf 100644 --- a/README.zh.md +++ b/README.zh.md @@ -190,18 +190,28 @@ $ python webserver.py ### 打造属于你的知识库: -1、将个人知识文件或者文件夹放入pilot/datasets目录中 +1.将个人知识文件或者文件夹放入pilot/datasets目录中 -2、在tools目录执行知识入库脚本 +2.在.env文件指定你的向量数据库类型,VECTOR_STORE_TYPE(默认Chroma),目前支持Chroma,Milvus(需要设置MILVUS_URL和MILVUS_PORT) + +3.在tools目录执行知识入库脚本() + +如果是选择默认知识库,不需要指定 --vector_name, 默认default ``` python tools/knowledge_init.py ---vector_name : your vector store name default_value:default ---append: append mode, True:append, False: not append default_value:False +``` + +如果选择新增知识库,在界面上新增知识库输入你的知识库名, ``` -3、在界面上新增知识库输入你的知识库名(如果没指定输入default),就可以根据你的知识库进行问答 +python tools/knowledge_init.py --vector_name = yourname + +--vector_name: vector_name default_value:default + +``` +就可以根据你的知识库进行问答 注意,这里默认向量模型是text2vec-large-chinese(模型比较大,如果个人电脑配置不够建议采用text2vec-base-chinese),因此确保需要将模型download下来放到models目录中。 diff --git a/docs/modules/knownledge.md b/docs/modules/knownledge.md index f33438226..32a22acf8 100644 --- a/docs/modules/knownledge.md +++ b/docs/modules/knownledge.md @@ -10,6 +10,9 @@ As the knowledge base is currently the most significant user demand scenario, we 1.Place personal knowledge files or folders in the pilot/datasets directory. +2.Update your .env, set your vector store type, VECTOR_STORE_TYPE=Chroma +(now only support Chroma and Milvus, if you set Milvus, please set MILVUS_URL and MILVUS_PORT) + 2.Run the knowledge repository script in the tools directory. ```