diff --git a/README.md b/README.md index 61fdf994d..587e97fa6 100644 --- a/README.md +++ b/README.md @@ -57,16 +57,6 @@ DB-GPT is an experimental open-source project that uses localized GPT large mode Run on an RTX 4090 GPU. ##### Chat Excel  -##### Chat Plugin - -##### LLM Management - -##### FastChat && vLLM - -##### Trace - -##### Chat Knowledge - ## Install  @@ -97,23 +87,23 @@ Run on an RTX 4090 GPU. ## Features Currently, we have released multiple key features, which are listed below to demonstrate our current capabilities: -- Private KBQA & data processing +- **Private Domain Q&A & Data Processing** The DB-GPT project offers a range of features to enhance knowledge base construction and enable efficient storage and retrieval of both structured and unstructured data. These include built-in support for uploading multiple file formats, the ability to integrate plug-ins for custom data extraction, and unified vector storage and retrieval capabilities for managing large volumes of information. -- Multiple data sources & visualization +- **Multi-Data Source & GBI(Generative Business intelligence)** The DB-GPT project enables seamless natural language interaction with various data sources, including Excel, databases, and data warehouses. It facilitates effortless querying and retrieval of information from these sources, allowing users to engage in intuitive conversations and obtain insights. Additionally, DB-GPT supports the generation of analysis reports, providing users with valuable summaries and interpretations of the data. -- Multi-Agents&Plugins +- **Multi-Agents&Plugins** It supports custom plug-ins to perform tasks, natively supports the Auto-GPT plug-in model, and the Agents protocol adopts the Agent Protocol standard. -- Fine-tuning text2SQL - +- **Automated Fine-tuning text2SQL** + An automated fine-tuning lightweight framework built around large language models, Text2SQL data sets, LoRA/QLoRA/Pturning, and other fine-tuning methods, making TextSQL fine-tuning as convenient as an assembly line. [DB-GPT-Hub](https://github.com/eosphoros-ai/DB-GPT-Hub) -- Multi LLMs Support, Supports multiple large language models, currently supporting +- **SMMF(Service-oriented Multi-model Management Framework)** Massive model support, including dozens of large language models such as open source and API agents. Such as LLaMA/LLaMA2, Baichuan, ChatGLM, Wenxin, Tongyi, Zhipu, etc. - [Vicuna](https://huggingface.co/Tribbiani/vicuna-13b) @@ -126,22 +116,6 @@ Currently, we have released multiple key features, which are listed below to dem - [falcon-40b](https://huggingface.co/tiiuae/falcon-40b) - [internlm-chat-7b](https://huggingface.co/internlm/internlm-chat-7b) - [Qwen-7B-Chat/Qwen-14B-Chat](https://huggingface.co/Qwen/) - - [RWKV-4-Raven](https://huggingface.co/BlinkDL/rwkv-4-raven) - - [CAMEL-13B-Combined-Data](https://huggingface.co/camel-ai/CAMEL-13B-Combined-Data) - - [dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b) - - [h2ogpt-gm-oasst1-en-2048-open-llama-7b](https://huggingface.co/h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b) - - [fastchat-t5-3b-v1.0](https://huggingface.co/lmsys/fastchat-t5) - - [mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat) - - [gpt4all-13b-snoozy](https://huggingface.co/nomic-ai/gpt4all-13b-snoozy) - - [Nous-Hermes-13b](https://huggingface.co/NousResearch/Nous-Hermes-13b) - - [codet5p-6b](https://huggingface.co/Salesforce/codet5p-6b) - - [guanaco-33b-merged](https://huggingface.co/timdettmers/guanaco-33b-merged) - - [WizardLM-13B-V1.0](https://huggingface.co/WizardLM/WizardLM-13B-V1.0) - - [WizardLM/WizardCoder-15B-V1.0](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0) - - [Llama2-Chinese-13b-Chat](https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat) - - [OpenLLaMa OpenInstruct](https://huggingface.co/VMware/open-llama-7b-open-instruct) - - Etc. - Support API Proxy LLMs - [x] [ChatGPT](https://api.openai.com/) @@ -149,7 +123,7 @@ Currently, we have released multiple key features, which are listed below to dem - [x] [Wenxin](https://cloud.baidu.com/product/wenxinworkshop?track=dingbutonglan) - [x] [ChatGLM](http://open.bigmodel.cn/) -- Privacy and security +- **Privacy and Security** The privacy and security of data are ensured through various technologies, such as privatized large models and proxy desensitization. @@ -313,16 +287,6 @@ The core capabilities mainly consist of the following parts: As of October 10, 2023, by fine-tuning an open-source model of 13 billion parameters using this project, the execution accuracy on the Spider evaluation dataset has surpassed that of GPT-4! -| name | Execution Accuracy | reference | -| ----------------------------------| ------------------ | ------------------------------------------------------------------------------------------------------------------------------ | -| **GPT-4** | **0.762** | [numbersstation-eval-res](https://www.numbersstation.ai/post/nsql-llama-2-7b) | -| ChatGPT | 0.728 | [numbersstation-eval-res](https://www.numbersstation.ai/post/nsql-llama-2-7b) | -| **CodeLlama-13b-Instruct-hf_lora**| **0.789** | sft train by our this project,only used spider train dataset ,the same eval way in this project with lora SFT | -| CodeLlama-13b-Instruct-hf_qlora | 0.774 | sft train by our this project,only used spider train dataset ,the same eval way in this project with qlora and nf4,bit4 SFT | -| wizardcoder | 0.610 | [text-to-sql-wizardcoder](https://github.com/cuplv/text-to-sql-wizardcoder/tree/main) | -| CodeLlama-13b-Instruct-hf | 0.556 | eval in this project default param | -| llama2_13b_hf_lora_best | 0.744 | sft train by our this project,only used spider train dataset ,the same eval way in this project | - [More Information about Text2SQL finetune](https://github.com/eosphoros-ai/DB-GPT-Hub) ## Licence diff --git a/README.zh.md b/README.zh.md index 115427e9e..0ab05ab4a 100644 --- a/README.zh.md +++ b/README.zh.md @@ -34,12 +34,9 @@ ## DB-GPT 是什么? +DB-GPT是一个开源的数据库领域大模型框架。目的是构建大模型领域的基础设施,通过开发多模型管理、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作等多种技术能力,让围绕数据库构建大模型应用更简单,更方便。 -随着大模型的发布迭代,大模型变得越来越智能,在使用大模型的过程当中,遇到极大的数据安全与隐私挑战。在利用大模型能力的过程中我们的私密数据跟环境需要掌握自己的手里,完全可控,避免任何的数据隐私泄露以及安全风险。基于此,我们发起了DB-GPT项目,为所有以数据库为基础的场景,构建一套完整的私有大模型解决方案。 此方案因为支持本地部署,所以不仅仅可以应用于独立私有环境,而且还可以根据业务模块独立部署隔离,让大模型的能力绝对私有、安全、可控。我们的愿景是让围绕数据库构建大模型应用更简单,更方便。 - -DB-GPT 是一个开源的以数据库为基础的GPT实验项目,使用本地化的GPT大模型与您的数据和环境进行交互,无数据泄露风险,100% 私密 - - +数据3.0 时代,基于模型、数据库,企业/开发者可以用更少的代码搭建自己的专属应用。 ## 目录 @@ -59,19 +56,8 @@ DB-GPT 是一个开源的以数据库为基础的GPT实验项目,使用本地 ##### Chat Excel  -#### Chat Plugin - -#### LLM Management - -#### FastChat && vLLM - -#### Trace - -#### Chat Knowledge - #### 根据自然语言对话生成分析图表 -
-
-
@@ -345,16 +309,6 @@ The MIT License (MIT) - SFT模型准确率 截止20231010,我们利用本项目基于开源的13B大小的模型微调后,在Spider的评估集上的执行准确率,已经超越GPT-4! -| 模型名称 | 执行准确率 | 说明 | -| ----------------------------------| ------------------ | ------------------------------------------------------------------------------------------------------------------------------ | -| **GPT-4** | **0.762** | [numbersstation-eval-res](https://www.numbersstation.ai/post/nsql-llama-2-7b) | -| ChatGPT | 0.728 | [numbersstation-eval-res](https://www.numbersstation.ai/post/nsql-llama-2-7b) | -| **CodeLlama-13b-Instruct-hf_lora**| **0.789** | sft train by our this project,only used spider train dataset ,the same eval way in this project with lora SFT | -| CodeLlama-13b-Instruct-hf_qlora | 0.774 | sft train by our this project,only used spider train dataset ,the same eval way in this project with qlora and nf4,bit4 SFT | -| wizardcoder | 0.610 | [text-to-sql-wizardcoder](https://github.com/cuplv/text-to-sql-wizardcoder/tree/main) | -| CodeLlama-13b-Instruct-hf | 0.556 | eval in this project default param | -| llama2_13b_hf_lora_best | 0.744 | sft train by our this project,only used spider train dataset ,the same eval way in this project | - [More Information about Text2SQL finetune](https://github.com/eosphoros-ai/DB-GPT-Hub) ## 联系我们 diff --git a/docs/index.rst b/docs/index.rst index 0497792b3..56f851227 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -6,7 +6,7 @@ Overview ------------------ -| DB-GPT is an open-source framework for large models in the database field. Its purpose is to build infrastructure for the domain of large models, making it easier and more convenient to develop applications around databases. By developing various technical capabilities such as: +| DB-GPT is an open-source framework for large models in the databases fields. It's purpose is to build infrastructure for the domain of large models, making it easier and more convenient to develop applications around databases. By developing various technical capabilities such as: 1. **SMMF(Service-oriented Multi-model Management Framework)** 2. **Text2SQL Fine-tuning**