mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-01 16:18:27 +00:00
Solving the GLm2-6b Multi GPUS Reasoning Problem (#311)
Solving the GLm2-6b Multi GPUS Reasoning Problem
This commit is contained in:
commit
e4681c9a9d
@ -123,3 +123,8 @@ PROXY_SERVER_URL=https://api.openai.com/v1/chat/completions
|
||||
# ** SUMMARY_CONFIG
|
||||
#*******************************************************************#
|
||||
SUMMARY_CONFIG=FAST
|
||||
|
||||
#*******************************************************************#
|
||||
# ** MUlti-GPU
|
||||
#*******************************************************************#
|
||||
NUM_GPUS = 1
|
||||
|
@ -28,6 +28,8 @@ class Config(metaclass=Singleton):
|
||||
self.skip_reprompt = False
|
||||
self.temperature = float(os.getenv("TEMPERATURE", 0.7))
|
||||
|
||||
self.NUM_GPUS = int(os.getenv("NUM_GPUS",1))
|
||||
|
||||
self.execute_local_commands = (
|
||||
os.getenv("EXECUTE_LOCAL_COMMANDS", "False") == "True"
|
||||
)
|
||||
|
@ -73,6 +73,40 @@ class VicunaLLMAdapater(BaseLLMAdaper):
|
||||
)
|
||||
return model, tokenizer
|
||||
|
||||
def auto_configure_device_map(num_gpus):
|
||||
"""handling multi gpu calls"""
|
||||
# transformer.word_embeddings occupying 1 floors
|
||||
# transformer.final_layernorm and lm_head occupying 1 floors
|
||||
# transformer.layers occupying 28 floors
|
||||
# Allocate a total of 30 layers to number On gpus cards
|
||||
num_trans_layers = 28
|
||||
per_gpu_layers = 30 / num_gpus
|
||||
#Bugfix: call torch.embedding in Linux and the incoming weight and input are not on the same device, resulting in a RuntimeError
|
||||
#Under Windows, model. device will be set to transformer. word_ Embeddings. device
|
||||
#Under Linux, model. device will be set to lm_ Head.device
|
||||
#When calling chat or stream_ During chat, input_ IDS will be placed on model. device
|
||||
#If transformer. word_ If embeddings. device and model. device are different, it will cause a RuntimeError
|
||||
#Therefore, here we will transform. word_ Embeddings, transformer. final_ Layernorm, lm_ Put all the heads on the first card
|
||||
device_map = {
|
||||
'transformer.embedding.word_embeddings': 0,
|
||||
'transformer.encoder.final_layernorm': 0,
|
||||
'transformer.output_layer': 0,
|
||||
'transformer.rotary_pos_emb': 0,
|
||||
'lm_head': 0
|
||||
}
|
||||
|
||||
used = 2
|
||||
gpu_target = 0
|
||||
for i in range(num_trans_layers):
|
||||
if used >= per_gpu_layers:
|
||||
gpu_target += 1
|
||||
used = 0
|
||||
assert gpu_target < num_gpus
|
||||
device_map[f'transformer.encoder.layers.{i}'] = gpu_target
|
||||
used += 1
|
||||
|
||||
return device_map
|
||||
|
||||
|
||||
class ChatGLMAdapater(BaseLLMAdaper):
|
||||
"""LLM Adatpter for THUDM/chatglm-6b"""
|
||||
@ -80,7 +114,7 @@ class ChatGLMAdapater(BaseLLMAdaper):
|
||||
def match(self, model_path: str):
|
||||
return "chatglm" in model_path
|
||||
|
||||
def loader(self, model_path: str, from_pretrained_kwargs: dict):
|
||||
def loader(self, model_path: str, from_pretrained_kwargs: dict, device_map=None, num_gpus=CFG.NUM_GPUS):
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
if DEVICE != "cuda":
|
||||
@ -91,11 +125,22 @@ class ChatGLMAdapater(BaseLLMAdaper):
|
||||
else:
|
||||
model = (
|
||||
AutoModel.from_pretrained(
|
||||
model_path, trust_remote_code=True, **from_pretrained_kwargs
|
||||
model_path, trust_remote_code=True,
|
||||
**from_pretrained_kwargs
|
||||
)
|
||||
.half()
|
||||
.cuda()
|
||||
# .cuda()
|
||||
)
|
||||
from accelerate import dispatch_model
|
||||
|
||||
# model = AutoModel.from_pretrained(model_path, trust_remote_code=True,
|
||||
# **from_pretrained_kwargs).half()
|
||||
#
|
||||
if device_map is None:
|
||||
device_map = auto_configure_device_map(num_gpus)
|
||||
|
||||
model = dispatch_model(model, device_map=device_map)
|
||||
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user