mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-05 18:33:52 +00:00
Solving the GLm2-6b Multi GPUS Reasoning Problem (#311)
Solving the GLm2-6b Multi GPUS Reasoning Problem
This commit is contained in:
commit
e4681c9a9d
@ -123,3 +123,8 @@ PROXY_SERVER_URL=https://api.openai.com/v1/chat/completions
|
|||||||
# ** SUMMARY_CONFIG
|
# ** SUMMARY_CONFIG
|
||||||
#*******************************************************************#
|
#*******************************************************************#
|
||||||
SUMMARY_CONFIG=FAST
|
SUMMARY_CONFIG=FAST
|
||||||
|
|
||||||
|
#*******************************************************************#
|
||||||
|
# ** MUlti-GPU
|
||||||
|
#*******************************************************************#
|
||||||
|
NUM_GPUS = 1
|
||||||
|
@ -28,6 +28,8 @@ class Config(metaclass=Singleton):
|
|||||||
self.skip_reprompt = False
|
self.skip_reprompt = False
|
||||||
self.temperature = float(os.getenv("TEMPERATURE", 0.7))
|
self.temperature = float(os.getenv("TEMPERATURE", 0.7))
|
||||||
|
|
||||||
|
self.NUM_GPUS = int(os.getenv("NUM_GPUS",1))
|
||||||
|
|
||||||
self.execute_local_commands = (
|
self.execute_local_commands = (
|
||||||
os.getenv("EXECUTE_LOCAL_COMMANDS", "False") == "True"
|
os.getenv("EXECUTE_LOCAL_COMMANDS", "False") == "True"
|
||||||
)
|
)
|
||||||
|
@ -73,6 +73,40 @@ class VicunaLLMAdapater(BaseLLMAdaper):
|
|||||||
)
|
)
|
||||||
return model, tokenizer
|
return model, tokenizer
|
||||||
|
|
||||||
|
def auto_configure_device_map(num_gpus):
|
||||||
|
"""handling multi gpu calls"""
|
||||||
|
# transformer.word_embeddings occupying 1 floors
|
||||||
|
# transformer.final_layernorm and lm_head occupying 1 floors
|
||||||
|
# transformer.layers occupying 28 floors
|
||||||
|
# Allocate a total of 30 layers to number On gpus cards
|
||||||
|
num_trans_layers = 28
|
||||||
|
per_gpu_layers = 30 / num_gpus
|
||||||
|
#Bugfix: call torch.embedding in Linux and the incoming weight and input are not on the same device, resulting in a RuntimeError
|
||||||
|
#Under Windows, model. device will be set to transformer. word_ Embeddings. device
|
||||||
|
#Under Linux, model. device will be set to lm_ Head.device
|
||||||
|
#When calling chat or stream_ During chat, input_ IDS will be placed on model. device
|
||||||
|
#If transformer. word_ If embeddings. device and model. device are different, it will cause a RuntimeError
|
||||||
|
#Therefore, here we will transform. word_ Embeddings, transformer. final_ Layernorm, lm_ Put all the heads on the first card
|
||||||
|
device_map = {
|
||||||
|
'transformer.embedding.word_embeddings': 0,
|
||||||
|
'transformer.encoder.final_layernorm': 0,
|
||||||
|
'transformer.output_layer': 0,
|
||||||
|
'transformer.rotary_pos_emb': 0,
|
||||||
|
'lm_head': 0
|
||||||
|
}
|
||||||
|
|
||||||
|
used = 2
|
||||||
|
gpu_target = 0
|
||||||
|
for i in range(num_trans_layers):
|
||||||
|
if used >= per_gpu_layers:
|
||||||
|
gpu_target += 1
|
||||||
|
used = 0
|
||||||
|
assert gpu_target < num_gpus
|
||||||
|
device_map[f'transformer.encoder.layers.{i}'] = gpu_target
|
||||||
|
used += 1
|
||||||
|
|
||||||
|
return device_map
|
||||||
|
|
||||||
|
|
||||||
class ChatGLMAdapater(BaseLLMAdaper):
|
class ChatGLMAdapater(BaseLLMAdaper):
|
||||||
"""LLM Adatpter for THUDM/chatglm-6b"""
|
"""LLM Adatpter for THUDM/chatglm-6b"""
|
||||||
@ -80,7 +114,7 @@ class ChatGLMAdapater(BaseLLMAdaper):
|
|||||||
def match(self, model_path: str):
|
def match(self, model_path: str):
|
||||||
return "chatglm" in model_path
|
return "chatglm" in model_path
|
||||||
|
|
||||||
def loader(self, model_path: str, from_pretrained_kwargs: dict):
|
def loader(self, model_path: str, from_pretrained_kwargs: dict, device_map=None, num_gpus=CFG.NUM_GPUS):
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
|
||||||
if DEVICE != "cuda":
|
if DEVICE != "cuda":
|
||||||
@ -91,11 +125,22 @@ class ChatGLMAdapater(BaseLLMAdaper):
|
|||||||
else:
|
else:
|
||||||
model = (
|
model = (
|
||||||
AutoModel.from_pretrained(
|
AutoModel.from_pretrained(
|
||||||
model_path, trust_remote_code=True, **from_pretrained_kwargs
|
model_path, trust_remote_code=True,
|
||||||
|
**from_pretrained_kwargs
|
||||||
)
|
)
|
||||||
.half()
|
.half()
|
||||||
.cuda()
|
# .cuda()
|
||||||
)
|
)
|
||||||
|
from accelerate import dispatch_model
|
||||||
|
|
||||||
|
# model = AutoModel.from_pretrained(model_path, trust_remote_code=True,
|
||||||
|
# **from_pretrained_kwargs).half()
|
||||||
|
#
|
||||||
|
if device_map is None:
|
||||||
|
device_map = auto_configure_device_map(num_gpus)
|
||||||
|
|
||||||
|
model = dispatch_model(model, device_map=device_map)
|
||||||
|
|
||||||
return model, tokenizer
|
return model, tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user