refactor:refactor knowledge api

1.delete CFG in embedding_engine api
2.add a text_splitter param in embedding_engine api
This commit is contained in:
aries_ckt 2023-07-11 16:33:48 +08:00
parent 6ff7ef9da4
commit e6aa46fc87
24 changed files with 161 additions and 151 deletions

View File

@ -26,7 +26,7 @@ before execution:
::
url = "https://db-gpt.readthedocs.io/en/latest/getting_started/getting_started.html"
embedding_model = "text2vec"
embedding_model = "your_model_path/all-MiniLM-L6-v2"
vector_store_config = {
"vector_store_name": your_name,
}
@ -43,9 +43,11 @@ Document type can be .txt, .pdf, .md, .doc, .ppt.
::
document_path = "your_path/test.md"
embedding_model = "text2vec"
embedding_model = "your_model_path/all-MiniLM-L6-v2"
vector_store_config = {
"vector_store_name": your_name,
"vector_store_type": "Chroma",
"chroma_persist_path": "your_persist_dir",
}
embedding_engine = EmbeddingEngine(
knowledge_source=document_path,
@ -59,7 +61,7 @@ Document type can be .txt, .pdf, .md, .doc, .ppt.
::
raw_text = "a long passage"
embedding_model = "text2vec"
embedding_model = "your_model_path/all-MiniLM-L6-v2"
vector_store_config = {
"vector_store_name": your_name,
}

View File

@ -32,11 +32,17 @@ Below is an example of using the knowledge base API to query knowledge:
```
vector_store_config = {
"vector_store_name": name
"vector_store_name": your_name,
"vector_store_type": "Chroma",
"chroma_persist_path": "your_persist_dir",
}
integrate
query = "your query"
embedding_model = "your_model_path/all-MiniLM-L6-v2"
embedding_engine = EmbeddingEngine(knowledge_source=url, knowledge_type=KnowledgeType.URL.value, model_name=embedding_model, vector_store_config=vector_store_config)
embedding_engine.similar_search(query, 10)

View File

@ -9,17 +9,12 @@ from pilot.embedding_engine import SourceEmbedding, register
class CSVEmbedding(SourceEmbedding):
"""csv embedding for read csv document."""
def __init__(
self,
file_path,
vector_store_config,
embedding_args: Optional[Dict] = None,
):
def __init__(self, file_path, vector_store_config, text_splitter=None):
"""Initialize with csv path."""
super().__init__(file_path, vector_store_config)
super().__init__(file_path, vector_store_config, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.embedding_args = embedding_args
self.text_splitter = text_splitter or None
@register
def read(self):

View File

@ -3,12 +3,9 @@ from typing import Optional
from chromadb.errors import NotEnoughElementsException
from langchain.embeddings import HuggingFaceEmbeddings
from pilot.configs.config import Config
from pilot.embedding_engine.knowledge_type import get_knowledge_embedding, KnowledgeType
from pilot.vector_store.connector import VectorStoreConnector
CFG = Config()
class EmbeddingEngine:
def __init__(
@ -45,7 +42,7 @@ class EmbeddingEngine:
def similar_search(self, text, topk):
vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, self.vector_store_config
self.vector_store_config["vector_store_type"], self.vector_store_config
)
try:
ans = vector_client.similar_search(text, topk)
@ -55,12 +52,12 @@ class EmbeddingEngine:
def vector_exist(self):
vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, self.vector_store_config
self.vector_store_config["vector_store_type"], self.vector_store_config
)
return vector_client.vector_name_exists()
def delete_by_ids(self, ids):
vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, self.vector_store_config
self.vector_store_config["vector_store_type"], self.vector_store_config
)
vector_client.delete_by_ids(ids=ids)

View File

@ -11,6 +11,7 @@ from pilot.embedding_engine.word_embedding import WordEmbedding
DocumentEmbeddingType = {
".txt": (MarkdownEmbedding, {}),
".md": (MarkdownEmbedding, {}),
".html": (MarkdownEmbedding, {}),
".pdf": (PDFEmbedding, {}),
".doc": (WordEmbedding, {}),
".docx": (WordEmbedding, {}),
@ -25,7 +26,18 @@ class KnowledgeType(Enum):
URL = "URL"
TEXT = "TEXT"
OSS = "OSS"
S3 = "S3"
NOTION = "NOTION"
MYSQL = "MYSQL"
TIDB = "TIDB"
CLICKHOUSE = "CLICKHOUSE"
OCEANBASE = "OCEANBASE"
ELASTICSEARCH = "ELASTICSEARCH"
HIVE = "HIVE"
PRESTO = "PRESTO"
KAFKA = "KAFKA"
SPARK = "SPARK"
YOUTUBE = "YOUTUBE"
def get_knowledge_embedding(knowledge_type, knowledge_source, vector_store_config):
@ -55,8 +67,29 @@ def get_knowledge_embedding(knowledge_type, knowledge_source, vector_store_confi
return embedding
case KnowledgeType.OSS.value:
raise Exception("OSS have not integrate")
case KnowledgeType.S3.value:
raise Exception("S3 have not integrate")
case KnowledgeType.NOTION.value:
raise Exception("NOTION have not integrate")
case KnowledgeType.MYSQL.value:
raise Exception("MYSQL have not integrate")
case KnowledgeType.TIDB.value:
raise Exception("TIDB have not integrate")
case KnowledgeType.CLICKHOUSE.value:
raise Exception("CLICKHOUSE have not integrate")
case KnowledgeType.OCEANBASE.value:
raise Exception("OCEANBASE have not integrate")
case KnowledgeType.ELASTICSEARCH.value:
raise Exception("ELASTICSEARCH have not integrate")
case KnowledgeType.HIVE.value:
raise Exception("HIVE have not integrate")
case KnowledgeType.PRESTO.value:
raise Exception("PRESTO have not integrate")
case KnowledgeType.KAFKA.value:
raise Exception("KAFKA have not integrate")
case KnowledgeType.SPARK.value:
raise Exception("SPARK have not integrate")
case KnowledgeType.YOUTUBE.value:
raise Exception("YOUTUBE have not integrate")
case _:
raise Exception("unknown knowledge type")

View File

@ -12,46 +12,38 @@ from langchain.text_splitter import (
RecursiveCharacterTextSplitter,
)
from pilot.configs.config import Config
from pilot.embedding_engine import SourceEmbedding, register
from pilot.embedding_engine.EncodeTextLoader import EncodeTextLoader
CFG = Config()
class MarkdownEmbedding(SourceEmbedding):
"""markdown embedding for read markdown document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with markdown path."""
super().__init__(file_path, vector_store_config)
def __init__(self, file_path, vector_store_config, text_splitter=None):
"""Initialize raw text word path."""
super().__init__(file_path, vector_store_config, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter or None
# self.encoding = encoding
@register
def read(self):
"""Load from markdown path."""
loader = EncodeTextLoader(self.file_path)
if CFG.LANGUAGE == "en":
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=20,
length_function=len,
)
else:
if self.text_splitter is None:
try:
text_splitter = SpacyTextSplitter(
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_size=100,
chunk_overlap=100,
)
except Exception:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, chunk_overlap=50
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(text_splitter)
return loader.load_and_split(self.text_splitter)
@register
def data_process(self, documents: List[Document]):

View File

@ -6,51 +6,36 @@ from langchain.document_loaders import PyPDFLoader
from langchain.schema import Document
from langchain.text_splitter import SpacyTextSplitter, RecursiveCharacterTextSplitter
from pilot.configs.config import Config
from pilot.embedding_engine import SourceEmbedding, register
CFG = Config()
class PDFEmbedding(SourceEmbedding):
"""pdf embedding for read pdf document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with pdf path."""
super().__init__(file_path, vector_store_config)
def __init__(self, file_path, vector_store_config, text_splitter=None):
"""Initialize pdf word path."""
super().__init__(file_path, vector_store_config, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter or None
@register
def read(self):
"""Load from pdf path."""
loader = PyPDFLoader(self.file_path)
# textsplitter = CHNDocumentSplitter(
# pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE
# )
# textsplitter = SpacyTextSplitter(
# pipeline="zh_core_web_sm",
# chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
# chunk_overlap=100,
# )
if CFG.LANGUAGE == "en":
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=20,
length_function=len,
)
else:
if self.text_splitter is None:
try:
text_splitter = SpacyTextSplitter(
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_size=100,
chunk_overlap=100,
)
except Exception:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, chunk_overlap=50
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(text_splitter)
return loader.load_and_split(self.text_splitter)
@register
def data_process(self, documents: List[Document]):

View File

@ -6,48 +6,36 @@ from langchain.document_loaders import UnstructuredPowerPointLoader
from langchain.schema import Document
from langchain.text_splitter import SpacyTextSplitter, RecursiveCharacterTextSplitter
from pilot.configs.config import Config
from pilot.embedding_engine import SourceEmbedding, register
CFG = Config()
class PPTEmbedding(SourceEmbedding):
"""ppt embedding for read ppt document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with pdf path."""
super().__init__(file_path, vector_store_config)
def __init__(self, file_path, vector_store_config, text_splitter=None):
"""Initialize ppt word path."""
super().__init__(file_path, vector_store_config, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter or None
@register
def read(self):
"""Load from ppt path."""
loader = UnstructuredPowerPointLoader(self.file_path)
# textsplitter = SpacyTextSplitter(
# pipeline="zh_core_web_sm",
# chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
# chunk_overlap=200,
# )
if CFG.LANGUAGE == "en":
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=20,
length_function=len,
)
else:
if self.text_splitter is None:
try:
text_splitter = SpacyTextSplitter(
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_size=100,
chunk_overlap=100,
)
except Exception:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, chunk_overlap=50
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(text_splitter)
return loader.load_and_split(self.text_splitter)
@register
def data_process(self, documents: List[Document]):

View File

@ -4,11 +4,11 @@ from abc import ABC, abstractmethod
from typing import Dict, List, Optional
from chromadb.errors import NotEnoughElementsException
from pilot.configs.config import Config
from langchain.text_splitter import TextSplitter
from pilot.vector_store.connector import VectorStoreConnector
registered_methods = []
CFG = Config()
def register(method):
@ -25,12 +25,14 @@ class SourceEmbedding(ABC):
def __init__(
self,
file_path,
vector_store_config,
vector_store_config: {},
text_splitter: TextSplitter = None,
embedding_args: Optional[Dict] = None,
):
"""Initialize with Loader url, model_name, vector_store_config"""
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter
self.embedding_args = embedding_args
self.embeddings = vector_store_config["embeddings"]
@ -44,8 +46,8 @@ class SourceEmbedding(ABC):
"""pre process data."""
@register
def text_split(self, text):
"""text split chunk"""
def text_splitter(self, text_splitter: TextSplitter):
"""add text split chunk"""
pass
@register
@ -57,7 +59,7 @@ class SourceEmbedding(ABC):
def index_to_store(self, docs):
"""index to vector store"""
self.vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, self.vector_store_config
self.vector_store_config["vector_store_type"], self.vector_store_config
)
return self.vector_client.load_document(docs)
@ -65,7 +67,7 @@ class SourceEmbedding(ABC):
def similar_search(self, doc, topk):
"""vector store similarity_search"""
self.vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, self.vector_store_config
self.vector_store_config["vector_store_type"], self.vector_store_config
)
try:
ans = self.vector_client.similar_search(doc, topk)
@ -75,7 +77,7 @@ class SourceEmbedding(ABC):
def vector_name_exist(self):
self.vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, self.vector_store_config
self.vector_store_config["vector_store_type"], self.vector_store_config
)
return self.vector_client.vector_name_exists()

View File

@ -8,11 +8,12 @@ from pilot.embedding_engine import SourceEmbedding, register
class StringEmbedding(SourceEmbedding):
"""string embedding for read string document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with pdf path."""
super().__init__(file_path, vector_store_config)
def __init__(self, file_path, vector_store_config, text_splitter=None):
"""Initialize raw text word path."""
super().__init__(file_path, vector_store_config, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter or None
@register
def read(self):

View File

@ -5,43 +5,37 @@ from langchain.document_loaders import WebBaseLoader
from langchain.schema import Document
from langchain.text_splitter import SpacyTextSplitter, RecursiveCharacterTextSplitter
from pilot.configs.config import Config
from pilot.embedding_engine import SourceEmbedding, register
CFG = Config()
class URLEmbedding(SourceEmbedding):
"""url embedding for read url document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with url path."""
super().__init__(file_path, vector_store_config)
def __init__(self, file_path, vector_store_config, text_splitter=None):
"""Initialize url word path."""
super().__init__(file_path, vector_store_config, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter or None
@register
def read(self):
"""Load from url path."""
loader = WebBaseLoader(web_path=self.file_path)
if CFG.LANGUAGE == "en":
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=20,
length_function=len,
)
else:
if self.text_splitter is None:
try:
text_splitter = SpacyTextSplitter(
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_size=100,
chunk_overlap=100,
)
except Exception:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, chunk_overlap=50
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(text_splitter)
return loader.load_and_split(self.text_splitter)
@register
def data_process(self, documents: List[Document]):

View File

@ -6,43 +6,36 @@ from langchain.document_loaders import UnstructuredWordDocumentLoader
from langchain.schema import Document
from langchain.text_splitter import SpacyTextSplitter, RecursiveCharacterTextSplitter
from pilot.configs.config import Config
from pilot.embedding_engine import SourceEmbedding, register
CFG = Config()
class WordEmbedding(SourceEmbedding):
"""word embedding for read word document."""
def __init__(self, file_path, vector_store_config):
def __init__(self, file_path, vector_store_config, text_splitter=None):
"""Initialize with word path."""
super().__init__(file_path, vector_store_config)
super().__init__(file_path, vector_store_config, text_splitter=None)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.text_splitter = text_splitter or None
@register
def read(self):
"""Load from word path."""
loader = UnstructuredWordDocumentLoader(self.file_path)
if CFG.LANGUAGE == "en":
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=20,
length_function=len,
)
else:
if self.text_splitter is None:
try:
text_splitter = SpacyTextSplitter(
self.text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_size=100,
chunk_overlap=100,
)
except Exception:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, chunk_overlap=50
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100, chunk_overlap=50
)
return loader.load_and_split(text_splitter)
return loader.load_and_split(self.text_splitter)
@register
def data_process(self, documents: List[Document]):

View File

@ -37,8 +37,8 @@ class ChatNewKnowledge(BaseChat):
self.knowledge_name = knowledge_name
vector_store_config = {
"vector_store_name": knowledge_name,
"text_field": "content",
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
"vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
}
self.knowledge_embedding_client = EmbeddingEngine(
model_name=LLM_MODEL_CONFIG["text2vec"],

View File

@ -38,7 +38,8 @@ class ChatDefaultKnowledge(BaseChat):
)
vector_store_config = {
"vector_store_name": "default",
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
"vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
}
self.knowledge_embedding_client = EmbeddingEngine(
model_name=LLM_MODEL_CONFIG["text2vec"],

View File

@ -38,7 +38,8 @@ class ChatUrlKnowledge(BaseChat):
self.url = url
vector_store_config = {
"vector_store_name": url.replace(":", ""),
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
"vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
}
self.knowledge_embedding_client = EmbeddingEngine(
model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL],

View File

@ -38,7 +38,8 @@ class ChatKnowledge(BaseChat):
)
vector_store_config = {
"vector_store_name": knowledge_space,
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
"vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
}
self.knowledge_embedding_client = EmbeddingEngine(
model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL],

View File

@ -2,7 +2,7 @@ import threading
from datetime import datetime
from pilot.configs.config import Config
from pilot.configs.model_config import LLM_MODEL_CONFIG
from pilot.configs.model_config import LLM_MODEL_CONFIG, KNOWLEDGE_UPLOAD_ROOT_PATH
from pilot.embedding_engine.embedding_engine import EmbeddingEngine
from pilot.logs import logger
from pilot.server.knowledge.chunk_db import (
@ -128,6 +128,8 @@ class KnowledgeService:
model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL],
vector_store_config={
"vector_store_name": space_name,
"vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
},
)
chunk_docs = client.read()

View File

@ -665,6 +665,7 @@ def knowledge_embedding_store(vs_id, files):
model_name=LLM_MODEL_CONFIG["text2vec"],
vector_store_config={
"vector_store_name": vector_store_name["vs_name"],
"vector_store_type": CFG.VECTOR_STORE_TYPE,
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
},
)

View File

@ -4,7 +4,7 @@ import uuid
from langchain.embeddings import HuggingFaceEmbeddings, logger
from pilot.configs.config import Config
from pilot.configs.model_config import LLM_MODEL_CONFIG
from pilot.configs.model_config import LLM_MODEL_CONFIG, KNOWLEDGE_UPLOAD_ROOT_PATH
from pilot.scene.base import ChatScene
from pilot.scene.base_chat import BaseChat
from pilot.embedding_engine.embedding_engine import EmbeddingEngine
@ -33,6 +33,8 @@ class DBSummaryClient:
)
vector_store_config = {
"vector_store_name": dbname + "_summary",
"vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
"embeddings": embeddings,
}
embedding = StringEmbedding(
@ -60,6 +62,8 @@ class DBSummaryClient:
) in db_summary_client.get_table_summary().items():
table_vector_store_config = {
"vector_store_name": dbname + "_" + table_name + "_ts",
"vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
"embeddings": embeddings,
}
embedding = StringEmbedding(
@ -73,6 +77,9 @@ class DBSummaryClient:
def get_db_summary(self, dbname, query, topk):
vector_store_config = {
"vector_store_name": dbname + "_profile",
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
"vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
}
knowledge_embedding_client = EmbeddingEngine(
model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL],
@ -86,6 +93,9 @@ class DBSummaryClient:
"""get user query related tables info"""
vector_store_config = {
"vector_store_name": dbname + "_summary",
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
"vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
}
knowledge_embedding_client = EmbeddingEngine(
model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL],
@ -109,6 +119,9 @@ class DBSummaryClient:
for table in related_tables:
vector_store_config = {
"vector_store_name": dbname + "_" + table + "_ts",
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
"vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
}
knowledge_embedding_client = EmbeddingEngine(
file_path="",
@ -128,6 +141,8 @@ class DBSummaryClient:
def init_db_profile(self, db_summary_client, dbname, embeddings):
profile_store_config = {
"vector_store_name": dbname + "_profile",
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
"vector_store_type": CFG.VECTOR_STORE_TYPE,
"embeddings": embeddings,
}
embedding = StringEmbedding(

View File

@ -1,7 +1,6 @@
import os
from langchain.vectorstores import Chroma
from pilot.configs.model_config import KNOWLEDGE_UPLOAD_ROOT_PATH
from pilot.logs import logger
from pilot.vector_store.vector_store_base import VectorStoreBase
@ -13,7 +12,7 @@ class ChromaStore(VectorStoreBase):
self.ctx = ctx
self.embeddings = ctx["embeddings"]
self.persist_dir = os.path.join(
KNOWLEDGE_UPLOAD_ROOT_PATH, ctx["vector_store_name"] + ".vectordb"
ctx["chroma_persist_path"], ctx["vector_store_name"] + ".vectordb"
)
self.vector_store_client = Chroma(
persist_directory=self.persist_dir, embedding_function=self.embeddings

View File

@ -1,8 +1,8 @@
from pilot.vector_store.chroma_store import ChromaStore
# from pilot.vector_store.milvus_store import MilvusStore
from pilot.vector_store.milvus_store import MilvusStore
connector = {"Chroma": ChromaStore, "Milvus": None}
connector = {"Chroma": ChromaStore, "Milvus": MilvusStore}
class VectorStoreConnector:

View File

@ -3,11 +3,9 @@ from typing import Any, Iterable, List, Optional, Tuple
from langchain.docstore.document import Document
from pymilvus import Collection, DataType, connections, utility
from pilot.configs.config import Config
from pilot.vector_store.vector_store_base import VectorStoreBase
CFG = Config()
class MilvusStore(VectorStoreBase):
@ -22,10 +20,10 @@ class MilvusStore(VectorStoreBase):
# self.configure(cfg)
connect_kwargs = {}
self.uri = CFG.MILVUS_URL
self.port = CFG.MILVUS_PORT
self.username = CFG.MILVUS_USERNAME
self.password = CFG.MILVUS_PASSWORD
self.uri = ctx.get("milvus_url", None)
self.port = ctx.get("milvus_port", None)
self.username = ctx.get("milvus_username", None)
self.password = ctx.get("milvus_password", None)
self.collection_name = ctx.get("vector_store_name", None)
self.secure = ctx.get("secure", None)
self.embedding = ctx.get("embeddings", None)

View File

@ -2,8 +2,12 @@ from pilot import EmbeddingEngine, KnowledgeType
url = "https://db-gpt.readthedocs.io/en/latest/getting_started/getting_started.html"
embedding_model = "text2vec"
vector_store_type = "Chroma"
chroma_persist_path = "your_persist_path"
vector_store_config = {
"vector_store_name": url.replace(":", ""),
"vector_store_type": vector_store_type,
"chroma_persist_path": chroma_persist_path
}
embedding_engine = EmbeddingEngine(knowledge_source=url, knowledge_type=KnowledgeType.URL.value, model_name=embedding_model, vector_store_config=vector_store_config)

View File

@ -14,7 +14,7 @@ from pilot.server.knowledge.request.request import KnowledgeSpaceRequest
from pilot.configs.config import Config
from pilot.configs.model_config import (
DATASETS_DIR,
LLM_MODEL_CONFIG,
LLM_MODEL_CONFIG, KNOWLEDGE_UPLOAD_ROOT_PATH,
)
from pilot.embedding_engine.embedding_engine import EmbeddingEngine
@ -68,7 +68,7 @@ if __name__ == "__main__":
args = parser.parse_args()
vector_name = args.vector_name
store_type = CFG.VECTOR_STORE_TYPE
vector_store_config = {"vector_store_name": vector_name}
vector_store_config = {"vector_store_name": vector_name, "vector_store_type": CFG.VECTOR_STORE_TYPE, "chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH}
print(vector_store_config)
kv = LocalKnowledgeInit(vector_store_config=vector_store_config)
kv.knowledge_persist(file_path=DATASETS_DIR)