mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-01 08:11:45 +00:00
Features: multi llm model support. (#78)
Features: multi llms support. - model_adapter for load multi models - chat_adapter for chat with models.
This commit is contained in:
commit
e847a3fc7a
1
.gitignore
vendored
1
.gitignore
vendored
@ -23,6 +23,7 @@ lib/
|
|||||||
lib64/
|
lib64/
|
||||||
parts/
|
parts/
|
||||||
sdist/
|
sdist/
|
||||||
|
models
|
||||||
var/
|
var/
|
||||||
wheels/
|
wheels/
|
||||||
models/
|
models/
|
||||||
|
@ -29,6 +29,10 @@ Currently, we have released multiple key features, which are listed below to dem
|
|||||||
- Unified vector storage/indexing of knowledge base
|
- Unified vector storage/indexing of knowledge base
|
||||||
- Support for unstructured data such as PDF, Markdown, CSV, and WebURL
|
- Support for unstructured data such as PDF, Markdown, CSV, and WebURL
|
||||||
|
|
||||||
|
- Milti LLMs Support
|
||||||
|
- Supports multiple large language models, currently supporting Vicuna (7b, 13b), ChatGLM-6b (int4, int8)
|
||||||
|
- TODO: codegen2, codet5p
|
||||||
|
|
||||||
|
|
||||||
## Demo
|
## Demo
|
||||||
|
|
||||||
@ -175,6 +179,10 @@ Notice: the webserver need to connect llmserver, so you need change the .env f
|
|||||||
We provide a user interface for Gradio, which allows you to use DB-GPT through our user interface. Additionally, we have prepared several reference articles (written in Chinese) that introduce the code and principles related to our project.
|
We provide a user interface for Gradio, which allows you to use DB-GPT through our user interface. Additionally, we have prepared several reference articles (written in Chinese) that introduce the code and principles related to our project.
|
||||||
- [LLM Practical In Action Series (1) — Combined Langchain-Vicuna Application Practical](https://medium.com/@cfqcsunny/llm-practical-in-action-series-1-combined-langchain-vicuna-application-practical-701cd0413c9f)
|
- [LLM Practical In Action Series (1) — Combined Langchain-Vicuna Application Practical](https://medium.com/@cfqcsunny/llm-practical-in-action-series-1-combined-langchain-vicuna-application-practical-701cd0413c9f)
|
||||||
|
|
||||||
|
### Multi LLMs Usage
|
||||||
|
|
||||||
|
To use multiple models, modify the LLM_MODEL parameter in the .env configuration file to switch between the models.
|
||||||
|
|
||||||
## Acknowledgement
|
## Acknowledgement
|
||||||
|
|
||||||
The achievements of this project are thanks to the technical community, especially the following projects:
|
The achievements of this project are thanks to the technical community, especially the following projects:
|
||||||
|
@ -26,6 +26,10 @@ DB-GPT 是一个开源的以数据库为基础的GPT实验项目,使用本地
|
|||||||
- 知识库统一向量存储/索引
|
- 知识库统一向量存储/索引
|
||||||
- 非结构化数据支持包括PDF、MarkDown、CSV、WebURL
|
- 非结构化数据支持包括PDF、MarkDown、CSV、WebURL
|
||||||
|
|
||||||
|
- 多模型支持
|
||||||
|
- 支持多种大语言模型, 当前已支持Vicuna(7b,13b), ChatGLM-6b(int4, int8)
|
||||||
|
- TODO: codet5p, codegen2
|
||||||
|
|
||||||
## 效果演示
|
## 效果演示
|
||||||
|
|
||||||
示例通过 RTX 4090 GPU 演示,[YouTube 地址](https://www.youtube.com/watch?v=1PWI6F89LPo)
|
示例通过 RTX 4090 GPU 演示,[YouTube 地址](https://www.youtube.com/watch?v=1PWI6F89LPo)
|
||||||
@ -178,6 +182,10 @@ $ python webserver.py
|
|||||||
2. [大模型实战系列(2) —— DB-GPT 阿里云部署指南](https://zhuanlan.zhihu.com/p/629467580)
|
2. [大模型实战系列(2) —— DB-GPT 阿里云部署指南](https://zhuanlan.zhihu.com/p/629467580)
|
||||||
3. [大模型实战系列(3) —— DB-GPT插件模型原理与使用](https://zhuanlan.zhihu.com/p/629623125)
|
3. [大模型实战系列(3) —— DB-GPT插件模型原理与使用](https://zhuanlan.zhihu.com/p/629623125)
|
||||||
|
|
||||||
|
|
||||||
|
### 多模型使用
|
||||||
|
在.env 配置文件当中, 修改LLM_MODEL参数来切换使用的模型。
|
||||||
|
|
||||||
## 感谢
|
## 感谢
|
||||||
|
|
||||||
项目取得的成果,需要感谢技术社区,尤其以下项目。
|
项目取得的成果,需要感谢技术社区,尤其以下项目。
|
||||||
|
@ -5,14 +5,21 @@ import requests
|
|||||||
import json
|
import json
|
||||||
import time
|
import time
|
||||||
import uuid
|
import uuid
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
from urllib.parse import urljoin
|
from urllib.parse import urljoin
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
|
||||||
|
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||||
|
sys.path.append(ROOT_PATH)
|
||||||
|
|
||||||
|
|
||||||
from pilot.configs.config import Config
|
from pilot.configs.config import Config
|
||||||
from pilot.conversation import conv_qa_prompt_template, conv_templates
|
from pilot.conversation import conv_qa_prompt_template, conv_templates
|
||||||
from langchain.prompts import PromptTemplate
|
from langchain.prompts import PromptTemplate
|
||||||
|
|
||||||
|
|
||||||
vicuna_stream_path = "generate_stream"
|
llmstream_stream_path = "generate_stream"
|
||||||
|
|
||||||
CFG = Config()
|
CFG = Config()
|
||||||
|
|
||||||
@ -21,38 +28,44 @@ def generate(query):
|
|||||||
template_name = "conv_one_shot"
|
template_name = "conv_one_shot"
|
||||||
state = conv_templates[template_name].copy()
|
state = conv_templates[template_name].copy()
|
||||||
|
|
||||||
pt = PromptTemplate(
|
# pt = PromptTemplate(
|
||||||
template=conv_qa_prompt_template,
|
# template=conv_qa_prompt_template,
|
||||||
input_variables=["context", "question"]
|
# input_variables=["context", "question"]
|
||||||
)
|
# )
|
||||||
|
|
||||||
result = pt.format(context="This page covers how to use the Chroma ecosystem within LangChain. It is broken into two parts: installation and setup, and then references to specific Chroma wrappers.",
|
# result = pt.format(context="This page covers how to use the Chroma ecosystem within LangChain. It is broken into two parts: installation and setup, and then references to specific Chroma wrappers.",
|
||||||
question=query)
|
# question=query)
|
||||||
|
|
||||||
print(result)
|
# print(result)
|
||||||
|
|
||||||
state.append_message(state.roles[0], result)
|
state.append_message(state.roles[0], query)
|
||||||
state.append_message(state.roles[1], None)
|
state.append_message(state.roles[1], None)
|
||||||
|
|
||||||
prompt = state.get_prompt()
|
prompt = state.get_prompt()
|
||||||
params = {
|
params = {
|
||||||
"model": "vicuna-13b",
|
"model": "chatglm-6b",
|
||||||
"prompt": prompt,
|
"prompt": prompt,
|
||||||
"temperature": 0.7,
|
"temperature": 1.0,
|
||||||
"max_new_tokens": 1024,
|
"max_new_tokens": 1024,
|
||||||
"stop": "###"
|
"stop": "###"
|
||||||
}
|
}
|
||||||
|
|
||||||
response = requests.post(
|
response = requests.post(
|
||||||
url=urljoin(CFG.MODEL_SERVER, vicuna_stream_path), data=json.dumps(params)
|
url=urljoin(CFG.MODEL_SERVER, llmstream_stream_path), data=json.dumps(params)
|
||||||
)
|
)
|
||||||
|
|
||||||
skip_echo_len = len(params["prompt"]) + 1 - params["prompt"].count("</s>") * 3
|
skip_echo_len = len(params["prompt"]) + 1 - params["prompt"].count("</s>") * 3
|
||||||
|
|
||||||
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
|
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
|
||||||
|
|
||||||
if chunk:
|
if chunk:
|
||||||
data = json.loads(chunk.decode())
|
data = json.loads(chunk.decode())
|
||||||
if data["error_code"] == 0:
|
if data["error_code"] == 0:
|
||||||
output = data["text"][skip_echo_len:].strip()
|
|
||||||
|
if "vicuna" in CFG.LLM_MODEL:
|
||||||
|
output = data["text"][skip_echo_len:].strip()
|
||||||
|
else:
|
||||||
|
output = data["text"].strip()
|
||||||
state.messages[-1][-1] = output + "▌"
|
state.messages[-1][-1] = output + "▌"
|
||||||
yield(output)
|
yield(output)
|
||||||
|
|
||||||
|
@ -16,12 +16,17 @@ DATA_DIR = os.path.join(PILOT_PATH, "data")
|
|||||||
|
|
||||||
nltk.data.path = [os.path.join(PILOT_PATH, "nltk_data")] + nltk.data.path
|
nltk.data.path = [os.path.join(PILOT_PATH, "nltk_data")] + nltk.data.path
|
||||||
|
|
||||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||||||
LLM_MODEL_CONFIG = {
|
LLM_MODEL_CONFIG = {
|
||||||
"flan-t5-base": os.path.join(MODEL_PATH, "flan-t5-base"),
|
"flan-t5-base": os.path.join(MODEL_PATH, "flan-t5-base"),
|
||||||
"vicuna-13b": os.path.join(MODEL_PATH, "vicuna-13b"),
|
"vicuna-13b": os.path.join(MODEL_PATH, "vicuna-13b"),
|
||||||
|
"vicuna-7b": os.path.join(MODEL_PATH, "vicuna-7b"),
|
||||||
"text2vec": os.path.join(MODEL_PATH, "text2vec-large-chinese"),
|
"text2vec": os.path.join(MODEL_PATH, "text2vec-large-chinese"),
|
||||||
"sentence-transforms": os.path.join(MODEL_PATH, "all-MiniLM-L6-v2")
|
"sentence-transforms": os.path.join(MODEL_PATH, "all-MiniLM-L6-v2"),
|
||||||
|
"codegen2-1b": os.path.join(MODEL_PATH, "codegen2-1B"),
|
||||||
|
"codet5p-2b": os.path.join(MODEL_PATH, "codet5p-2b"),
|
||||||
|
"chatglm-6b-int4": os.path.join(MODEL_PATH, "chatglm-6b-int4"),
|
||||||
|
"chatglm-6b": os.path.join(MODEL_PATH, "chatglm-6b"),
|
||||||
}
|
}
|
||||||
|
|
||||||
# Load model config
|
# Load model config
|
||||||
|
@ -15,6 +15,9 @@ DB_SETTINGS = {
|
|||||||
"port": CFG.LOCAL_DB_PORT
|
"port": CFG.LOCAL_DB_PORT
|
||||||
}
|
}
|
||||||
|
|
||||||
|
ROLE_USER = "USER"
|
||||||
|
ROLE_ASSISTANT = "Assistant"
|
||||||
|
|
||||||
class SeparatorStyle(Enum):
|
class SeparatorStyle(Enum):
|
||||||
SINGLE = auto()
|
SINGLE = auto()
|
||||||
TWO = auto()
|
TWO = auto()
|
||||||
|
@ -9,6 +9,8 @@ from transformers import (
|
|||||||
AutoModel
|
AutoModel
|
||||||
)
|
)
|
||||||
|
|
||||||
|
from pilot.configs.model_config import DEVICE
|
||||||
|
|
||||||
class BaseLLMAdaper:
|
class BaseLLMAdaper:
|
||||||
"""The Base class for multi model, in our project.
|
"""The Base class for multi model, in our project.
|
||||||
We will support those model, which performance resemble ChatGPT """
|
We will support those model, which performance resemble ChatGPT """
|
||||||
@ -61,13 +63,29 @@ class ChatGLMAdapater(BaseLLMAdaper):
|
|||||||
"""LLM Adatpter for THUDM/chatglm-6b"""
|
"""LLM Adatpter for THUDM/chatglm-6b"""
|
||||||
def match(self, model_path: str):
|
def match(self, model_path: str):
|
||||||
return "chatglm" in model_path
|
return "chatglm" in model_path
|
||||||
|
|
||||||
def loader(self, model_path: str, from_pretrained_kwargs: dict):
|
def loader(self, model_path: str, from_pretrained_kwargs: dict):
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
model = AutoModel.from_pretrained(
|
|
||||||
model_path, trust_remote_code=True, **from_pretrained_kwargs
|
if DEVICE != "cuda":
|
||||||
).half().cuda()
|
model = AutoModel.from_pretrained(
|
||||||
return model, tokenizer
|
model_path, trust_remote_code=True, **from_pretrained_kwargs
|
||||||
|
).float()
|
||||||
|
return model, tokenizer
|
||||||
|
else:
|
||||||
|
model = AutoModel.from_pretrained(
|
||||||
|
model_path, trust_remote_code=True, **from_pretrained_kwargs
|
||||||
|
).half().cuda()
|
||||||
|
return model, tokenizer
|
||||||
|
|
||||||
|
class CodeGenAdapter(BaseLLMAdaper):
|
||||||
|
pass
|
||||||
|
|
||||||
|
class StarCoderAdapter(BaseLLMAdaper):
|
||||||
|
pass
|
||||||
|
|
||||||
|
class T5CodeAdapter(BaseLLMAdaper):
|
||||||
|
pass
|
||||||
|
|
||||||
class KoalaLLMAdapter(BaseLLMAdaper):
|
class KoalaLLMAdapter(BaseLLMAdaper):
|
||||||
"""Koala LLM Adapter which Based LLaMA """
|
"""Koala LLM Adapter which Based LLaMA """
|
||||||
@ -91,6 +109,7 @@ class GPT4AllAdapter(BaseLLMAdaper):
|
|||||||
|
|
||||||
|
|
||||||
register_llm_model_adapters(VicunaLLMAdapater)
|
register_llm_model_adapters(VicunaLLMAdapater)
|
||||||
|
register_llm_model_adapters(ChatGLMAdapater)
|
||||||
# TODO Default support vicuna, other model need to tests and Evaluate
|
# TODO Default support vicuna, other model need to tests and Evaluate
|
||||||
|
|
||||||
register_llm_model_adapters(BaseLLMAdaper)
|
register_llm_model_adapters(BaseLLMAdaper)
|
@ -1,3 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# -*- coding:utf-8 -*-
|
|
||||||
|
|
49
pilot/model/chatglm_llm.py
Normal file
49
pilot/model/chatglm_llm.py
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding:utf-8 -*-
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from pilot.conversation import ROLE_USER, ROLE_ASSISTANT
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def chatglm_generate_stream(model, tokenizer, params, device, context_len=2048, stream_interval=2):
|
||||||
|
|
||||||
|
"""Generate text using chatglm model's chat api """
|
||||||
|
prompt = params["prompt"]
|
||||||
|
temperature = float(params.get("temperature", 1.0))
|
||||||
|
top_p = float(params.get("top_p", 1.0))
|
||||||
|
stop = params.get("stop", "###")
|
||||||
|
echo = params.get("echo", False)
|
||||||
|
|
||||||
|
generate_kwargs = {
|
||||||
|
"do_sample": True if temperature > 1e-5 else False,
|
||||||
|
"top_p": top_p,
|
||||||
|
"repetition_penalty": 1.0,
|
||||||
|
"logits_processor": None
|
||||||
|
}
|
||||||
|
|
||||||
|
if temperature > 1e-5:
|
||||||
|
generate_kwargs["temperature"] = temperature
|
||||||
|
|
||||||
|
# TODO, Fix this
|
||||||
|
hist = []
|
||||||
|
|
||||||
|
messages = prompt.split(stop)
|
||||||
|
|
||||||
|
# Add history chat to hist for model.
|
||||||
|
for i in range(1, len(messages) - 2, 2):
|
||||||
|
hist.append((messages[i].split(ROLE_USER + ":")[1], messages[i+1].split(ROLE_ASSISTANT + ":")[1]))
|
||||||
|
|
||||||
|
query = messages[-2].split(ROLE_USER + ":")[1]
|
||||||
|
print("Query Message: ", query)
|
||||||
|
output = ""
|
||||||
|
i = 0
|
||||||
|
for i, (response, new_hist) in enumerate(model.stream_chat(tokenizer, query, hist, **generate_kwargs)):
|
||||||
|
if echo:
|
||||||
|
output = query + " " + response
|
||||||
|
else:
|
||||||
|
output = response
|
||||||
|
|
||||||
|
yield output
|
||||||
|
|
||||||
|
yield output
|
125
pilot/model/llm/monkey_patch.py
Normal file
125
pilot/model/llm/monkey_patch.py
Normal file
@ -0,0 +1,125 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding:utf-8 -*-
|
||||||
|
|
||||||
|
import math
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
import transformers
|
||||||
|
|
||||||
|
|
||||||
|
def rotate_half(x):
|
||||||
|
"""Rotates half the hidden dims of the input."""
|
||||||
|
x1 = x[..., : x.shape[-1] // 2].clone()
|
||||||
|
x2 = x[..., x.shape[-1] // 2 :].clone()
|
||||||
|
return torch.cat((-x2, x1), dim=-1)
|
||||||
|
|
||||||
|
|
||||||
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
||||||
|
gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
|
||||||
|
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
|
||||||
|
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
||||||
|
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
||||||
|
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||||
|
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||||
|
return q_embed, k_embed
|
||||||
|
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||||
|
output_attentions: bool = False,
|
||||||
|
use_cache: bool = False,
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||||
|
bsz, q_len, _ = hidden_states.size()
|
||||||
|
|
||||||
|
query_states = (
|
||||||
|
self.q_proj(hidden_states)
|
||||||
|
.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||||
|
.transpose(1, 2)
|
||||||
|
)
|
||||||
|
key_states = (
|
||||||
|
self.k_proj(hidden_states)
|
||||||
|
.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||||
|
.transpose(1, 2)
|
||||||
|
)
|
||||||
|
value_states = (
|
||||||
|
self.v_proj(hidden_states)
|
||||||
|
.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||||
|
.transpose(1, 2)
|
||||||
|
)
|
||||||
|
|
||||||
|
kv_seq_len = key_states.shape[-2]
|
||||||
|
if past_key_value is not None:
|
||||||
|
kv_seq_len += past_key_value[0].shape[-2]
|
||||||
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||||
|
query_states, key_states = apply_rotary_pos_emb(
|
||||||
|
query_states, key_states, cos, sin, position_ids
|
||||||
|
)
|
||||||
|
# [bsz, nh, t, hd]
|
||||||
|
|
||||||
|
if past_key_value is not None:
|
||||||
|
# reuse k, v, self_attention
|
||||||
|
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||||||
|
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||||||
|
|
||||||
|
past_key_value = (key_states, value_states) if use_cache else None
|
||||||
|
|
||||||
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(
|
||||||
|
self.head_dim
|
||||||
|
)
|
||||||
|
|
||||||
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||||
|
raise ValueError(
|
||||||
|
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
||||||
|
f" {attn_weights.size()}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if attention_mask is not None:
|
||||||
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
||||||
|
raise ValueError(
|
||||||
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
||||||
|
)
|
||||||
|
attn_weights = attn_weights + attention_mask
|
||||||
|
attn_weights = torch.max(
|
||||||
|
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
|
||||||
|
)
|
||||||
|
|
||||||
|
# upcast attention to fp32
|
||||||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
|
||||||
|
query_states.dtype
|
||||||
|
)
|
||||||
|
attn_output = torch.matmul(attn_weights, value_states)
|
||||||
|
|
||||||
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||||
|
raise ValueError(
|
||||||
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
||||||
|
f" {attn_output.size()}"
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output = attn_output.transpose(1, 2)
|
||||||
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
|
|
||||||
|
attn_output = self.o_proj(attn_output)
|
||||||
|
|
||||||
|
if not output_attentions:
|
||||||
|
attn_weights = None
|
||||||
|
|
||||||
|
return attn_output, attn_weights, past_key_value
|
||||||
|
|
||||||
|
|
||||||
|
def replace_llama_attn_with_non_inplace_operations():
|
||||||
|
"""Avoid bugs in mps backend by not using in-place operations."""
|
||||||
|
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward
|
||||||
|
|
||||||
|
import transformers
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def replace_llama_attn_with_non_inplace_operations():
|
||||||
|
"""Avoid bugs in mps backend by not using in-place operations."""
|
||||||
|
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward
|
@ -2,11 +2,39 @@
|
|||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
import sys
|
||||||
import warnings
|
import warnings
|
||||||
from pilot.singleton import Singleton
|
from pilot.singleton import Singleton
|
||||||
|
from typing import Optional
|
||||||
from pilot.model.compression import compress_module
|
from pilot.model.compression import compress_module
|
||||||
from pilot.model.adapter import get_llm_model_adapter
|
from pilot.model.adapter import get_llm_model_adapter
|
||||||
|
from pilot.utils import get_gpu_memory
|
||||||
|
from pilot.model.llm.monkey_patch import replace_llama_attn_with_non_inplace_operations
|
||||||
|
|
||||||
|
def raise_warning_for_incompatible_cpu_offloading_configuration(
|
||||||
|
device: str, load_8bit: bool, cpu_offloading: bool
|
||||||
|
):
|
||||||
|
if cpu_offloading:
|
||||||
|
if not load_8bit:
|
||||||
|
warnings.warn(
|
||||||
|
"The cpu-offloading feature can only be used while also using 8-bit-quantization.\n"
|
||||||
|
"Use '--load-8bit' to enable 8-bit-quantization\n"
|
||||||
|
"Continuing without cpu-offloading enabled\n"
|
||||||
|
)
|
||||||
|
return False
|
||||||
|
if not "linux" in sys.platform:
|
||||||
|
warnings.warn(
|
||||||
|
"CPU-offloading is only supported on linux-systems due to the limited compatability with the bitsandbytes-package\n"
|
||||||
|
"Continuing without cpu-offloading enabled\n"
|
||||||
|
)
|
||||||
|
return False
|
||||||
|
if device != "cuda":
|
||||||
|
warnings.warn(
|
||||||
|
"CPU-offloading is only enabled when using CUDA-devices\n"
|
||||||
|
"Continuing without cpu-offloading enabled\n"
|
||||||
|
)
|
||||||
|
return False
|
||||||
|
return cpu_offloading
|
||||||
|
|
||||||
|
|
||||||
class ModelLoader(metaclass=Singleton):
|
class ModelLoader(metaclass=Singleton):
|
||||||
@ -30,26 +58,37 @@ class ModelLoader(metaclass=Singleton):
|
|||||||
}
|
}
|
||||||
|
|
||||||
# TODO multi gpu support
|
# TODO multi gpu support
|
||||||
def loader(self, num_gpus, load_8bit=False, debug=False):
|
def loader(self, num_gpus, load_8bit=False, debug=False, cpu_offloading=False, max_gpu_memory: Optional[str]=None):
|
||||||
|
|
||||||
if self.device == "cpu":
|
if self.device == "cpu":
|
||||||
kwargs = {}
|
kwargs = {"torch_dtype": torch.float32}
|
||||||
|
|
||||||
elif self.device == "cuda":
|
elif self.device == "cuda":
|
||||||
kwargs = {"torch_dtype": torch.float16}
|
kwargs = {"torch_dtype": torch.float16}
|
||||||
if num_gpus == "auto":
|
num_gpus = int(num_gpus)
|
||||||
|
|
||||||
|
if num_gpus != 1:
|
||||||
kwargs["device_map"] = "auto"
|
kwargs["device_map"] = "auto"
|
||||||
|
if max_gpu_memory is None:
|
||||||
|
kwargs["device_map"] = "sequential"
|
||||||
|
|
||||||
|
available_gpu_memory = get_gpu_memory(num_gpus)
|
||||||
|
kwargs["max_memory"] = {
|
||||||
|
i: str(int(available_gpu_memory[i] * 0.85)) + "GiB"
|
||||||
|
for i in range(num_gpus)
|
||||||
|
}
|
||||||
|
|
||||||
else:
|
else:
|
||||||
num_gpus = int(num_gpus)
|
kwargs["max_memory"] = {i: max_gpu_memory for i in range(num_gpus)}
|
||||||
if num_gpus != 1:
|
|
||||||
kwargs.update({
|
elif self.device == "mps":
|
||||||
"device_map": "auto",
|
kwargs = kwargs = {"torch_dtype": torch.float16}
|
||||||
"max_memory": {i: "13GiB" for i in range(num_gpus)},
|
replace_llama_attn_with_non_inplace_operations()
|
||||||
})
|
|
||||||
else:
|
else:
|
||||||
# Todo Support mps for practise
|
|
||||||
raise ValueError(f"Invalid device: {self.device}")
|
raise ValueError(f"Invalid device: {self.device}")
|
||||||
|
|
||||||
|
# TODO when cpu loading, need use quantization config
|
||||||
|
|
||||||
llm_adapter = get_llm_model_adapter(self.model_path)
|
llm_adapter = get_llm_model_adapter(self.model_path)
|
||||||
model, tokenizer = llm_adapter.loader(self.model_path, kwargs)
|
model, tokenizer = llm_adapter.loader(self.model_path, kwargs)
|
||||||
|
|
||||||
@ -61,7 +100,7 @@ class ModelLoader(metaclass=Singleton):
|
|||||||
else:
|
else:
|
||||||
compress_module(model, self.device)
|
compress_module(model, self.device)
|
||||||
|
|
||||||
if (self.device == "cuda" and num_gpus == 1):
|
if (self.device == "cuda" and num_gpus == 1 and not cpu_offloading) or self.device == "mps":
|
||||||
model.to(self.device)
|
model.to(self.device)
|
||||||
|
|
||||||
if debug:
|
if debug:
|
||||||
|
82
pilot/server/chat_adapter.py
Normal file
82
pilot/server/chat_adapter.py
Normal file
@ -0,0 +1,82 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
from typing import List
|
||||||
|
from functools import cache
|
||||||
|
from pilot.model.inference import generate_stream
|
||||||
|
|
||||||
|
class BaseChatAdpter:
|
||||||
|
"""The Base class for chat with llm models. it will match the model,
|
||||||
|
and fetch output from model"""
|
||||||
|
|
||||||
|
def match(self, model_path: str):
|
||||||
|
return True
|
||||||
|
|
||||||
|
def get_generate_stream_func(self):
|
||||||
|
"""Return the generate stream handler func"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
llm_model_chat_adapters: List[BaseChatAdpter] = []
|
||||||
|
|
||||||
|
|
||||||
|
def register_llm_model_chat_adapter(cls):
|
||||||
|
"""Register a chat adapter"""
|
||||||
|
llm_model_chat_adapters.append(cls())
|
||||||
|
|
||||||
|
|
||||||
|
@cache
|
||||||
|
def get_llm_chat_adapter(model_path: str) -> BaseChatAdpter:
|
||||||
|
"""Get a chat generate func for a model"""
|
||||||
|
for adapter in llm_model_chat_adapters:
|
||||||
|
if adapter.match(model_path):
|
||||||
|
return adapter
|
||||||
|
|
||||||
|
raise ValueError(f"Invalid model for chat adapter {model_path}")
|
||||||
|
|
||||||
|
|
||||||
|
class VicunaChatAdapter(BaseChatAdpter):
|
||||||
|
|
||||||
|
""" Model chat Adapter for vicuna"""
|
||||||
|
def match(self, model_path: str):
|
||||||
|
return "vicuna" in model_path
|
||||||
|
|
||||||
|
def get_generate_stream_func(self):
|
||||||
|
return generate_stream
|
||||||
|
|
||||||
|
|
||||||
|
class ChatGLMChatAdapter(BaseChatAdpter):
|
||||||
|
""" Model chat Adapter for ChatGLM"""
|
||||||
|
def match(self, model_path: str):
|
||||||
|
return "chatglm" in model_path
|
||||||
|
|
||||||
|
def get_generate_stream_func(self):
|
||||||
|
from pilot.model.chatglm_llm import chatglm_generate_stream
|
||||||
|
return chatglm_generate_stream
|
||||||
|
|
||||||
|
|
||||||
|
class CodeT5ChatAdapter(BaseChatAdpter):
|
||||||
|
|
||||||
|
""" Model chat adapter for CodeT5 """
|
||||||
|
def match(self, model_path: str):
|
||||||
|
return "codet5" in model_path
|
||||||
|
|
||||||
|
def get_generate_stream_func(self):
|
||||||
|
# TODO
|
||||||
|
pass
|
||||||
|
|
||||||
|
class CodeGenChatAdapter(BaseChatAdpter):
|
||||||
|
|
||||||
|
""" Model chat adapter for CodeGen """
|
||||||
|
def match(self, model_path: str):
|
||||||
|
return "codegen" in model_path
|
||||||
|
|
||||||
|
def get_generate_stream_func(self):
|
||||||
|
# TODO
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
register_llm_model_chat_adapter(VicunaChatAdapter)
|
||||||
|
register_llm_model_chat_adapter(ChatGLMChatAdapter)
|
||||||
|
|
||||||
|
register_llm_model_chat_adapter(BaseChatAdpter)
|
@ -23,20 +23,65 @@ from pilot.model.inference import generate_output, get_embeddings
|
|||||||
from pilot.model.loader import ModelLoader
|
from pilot.model.loader import ModelLoader
|
||||||
from pilot.configs.model_config import *
|
from pilot.configs.model_config import *
|
||||||
from pilot.configs.config import Config
|
from pilot.configs.config import Config
|
||||||
|
from pilot.server.chat_adapter import get_llm_chat_adapter
|
||||||
|
|
||||||
|
|
||||||
CFG = Config()
|
CFG = Config()
|
||||||
model_path = LLM_MODEL_CONFIG[CFG.LLM_MODEL]
|
|
||||||
|
|
||||||
ml = ModelLoader(model_path=model_path)
|
|
||||||
model, tokenizer = ml.loader(num_gpus=1, load_8bit=ISLOAD_8BIT, debug=ISDEBUG)
|
|
||||||
#model, tokenizer = load_model(model_path=model_path, device=DEVICE, num_gpus=1, load_8bit=True, debug=False)
|
|
||||||
|
|
||||||
class ModelWorker:
|
class ModelWorker:
|
||||||
def __init__(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
# TODO
|
def __init__(self, model_path, model_name, device, num_gpus=1):
|
||||||
|
|
||||||
|
if model_path.endswith("/"):
|
||||||
|
model_path = model_path[:-1]
|
||||||
|
self.model_name = model_name or model_path.split("/")[-1]
|
||||||
|
self.device = device
|
||||||
|
|
||||||
|
self.ml = ModelLoader(model_path=model_path)
|
||||||
|
self.model, self.tokenizer = self.ml.loader(num_gpus, load_8bit=ISLOAD_8BIT, debug=ISDEBUG)
|
||||||
|
|
||||||
|
if hasattr(self.model.config, "max_sequence_length"):
|
||||||
|
self.context_len = self.model.config.max_sequence_length
|
||||||
|
elif hasattr(self.model.config, "max_position_embeddings"):
|
||||||
|
self.context_len = self.model.config.max_position_embeddings
|
||||||
|
|
||||||
|
else:
|
||||||
|
self.context_len = 2048
|
||||||
|
|
||||||
|
self.llm_chat_adapter = get_llm_chat_adapter(model_path)
|
||||||
|
self.generate_stream_func = self.llm_chat_adapter.get_generate_stream_func()
|
||||||
|
|
||||||
|
def get_queue_length(self):
|
||||||
|
if model_semaphore is None or model_semaphore._value is None or model_semaphore._waiters is None:
|
||||||
|
return 0
|
||||||
|
else:
|
||||||
|
CFG.LIMIT_MODEL_CONCURRENCY - model_semaphore._value + len(model_semaphore._waiters)
|
||||||
|
|
||||||
|
def generate_stream_gate(self, params):
|
||||||
|
try:
|
||||||
|
for output in self.generate_stream_func(
|
||||||
|
self.model,
|
||||||
|
self.tokenizer,
|
||||||
|
params,
|
||||||
|
DEVICE,
|
||||||
|
CFG.MAX_POSITION_EMBEDDINGS
|
||||||
|
):
|
||||||
|
print("output: ", output)
|
||||||
|
ret = {
|
||||||
|
"text": output,
|
||||||
|
"error_code": 0,
|
||||||
|
}
|
||||||
|
yield json.dumps(ret).encode() + b"\0"
|
||||||
|
|
||||||
|
except torch.cuda.CudaError:
|
||||||
|
ret = {
|
||||||
|
"text": "**GPU OutOfMemory, Please Refresh.**",
|
||||||
|
"error_code": 0
|
||||||
|
}
|
||||||
|
yield json.dumps(ret).encode() + b"\0"
|
||||||
|
|
||||||
|
def get_embeddings(self, prompt):
|
||||||
|
return get_embeddings(self.model, self.tokenizer, prompt)
|
||||||
|
|
||||||
app = FastAPI()
|
app = FastAPI()
|
||||||
|
|
||||||
@ -61,41 +106,17 @@ def release_model_semaphore():
|
|||||||
model_semaphore.release()
|
model_semaphore.release()
|
||||||
|
|
||||||
|
|
||||||
def generate_stream_gate(params):
|
|
||||||
try:
|
|
||||||
for output in generate_stream(
|
|
||||||
model,
|
|
||||||
tokenizer,
|
|
||||||
params,
|
|
||||||
DEVICE,
|
|
||||||
CFG.MAX_POSITION_EMBEDDINGS,
|
|
||||||
):
|
|
||||||
print("output: ", output)
|
|
||||||
ret = {
|
|
||||||
"text": output,
|
|
||||||
"error_code": 0,
|
|
||||||
}
|
|
||||||
yield json.dumps(ret).encode() + b"\0"
|
|
||||||
except torch.cuda.CudaError:
|
|
||||||
ret = {
|
|
||||||
"text": "**GPU OutOfMemory, Please Refresh.**",
|
|
||||||
"error_code": 0
|
|
||||||
}
|
|
||||||
yield json.dumps(ret).encode() + b"\0"
|
|
||||||
|
|
||||||
|
|
||||||
@app.post("/generate_stream")
|
@app.post("/generate_stream")
|
||||||
async def api_generate_stream(request: Request):
|
async def api_generate_stream(request: Request):
|
||||||
global model_semaphore, global_counter
|
global model_semaphore, global_counter
|
||||||
global_counter += 1
|
global_counter += 1
|
||||||
params = await request.json()
|
params = await request.json()
|
||||||
print(model, tokenizer, params, DEVICE)
|
|
||||||
|
|
||||||
if model_semaphore is None:
|
if model_semaphore is None:
|
||||||
model_semaphore = asyncio.Semaphore(CFG.LIMIT_MODEL_CONCURRENCY)
|
model_semaphore = asyncio.Semaphore(CFG.LIMIT_MODEL_CONCURRENCY)
|
||||||
await model_semaphore.acquire()
|
await model_semaphore.acquire()
|
||||||
|
|
||||||
generator = generate_stream_gate(params)
|
generator = worker.generate_stream_gate(params)
|
||||||
background_tasks = BackgroundTasks()
|
background_tasks = BackgroundTasks()
|
||||||
background_tasks.add_task(release_model_semaphore)
|
background_tasks.add_task(release_model_semaphore)
|
||||||
return StreamingResponse(generator, background=background_tasks)
|
return StreamingResponse(generator, background=background_tasks)
|
||||||
@ -111,7 +132,7 @@ def generate(prompt_request: PromptRequest):
|
|||||||
|
|
||||||
response = []
|
response = []
|
||||||
rsp_str = ""
|
rsp_str = ""
|
||||||
output = generate_stream_gate(params)
|
output = worker.generate_stream_gate(params)
|
||||||
for rsp in output:
|
for rsp in output:
|
||||||
# rsp = rsp.decode("utf-8")
|
# rsp = rsp.decode("utf-8")
|
||||||
rsp_str = str(rsp, "utf-8")
|
rsp_str = str(rsp, "utf-8")
|
||||||
@ -125,9 +146,21 @@ def generate(prompt_request: PromptRequest):
|
|||||||
def embeddings(prompt_request: EmbeddingRequest):
|
def embeddings(prompt_request: EmbeddingRequest):
|
||||||
params = {"prompt": prompt_request.prompt}
|
params = {"prompt": prompt_request.prompt}
|
||||||
print("Received prompt: ", params["prompt"])
|
print("Received prompt: ", params["prompt"])
|
||||||
output = get_embeddings(model, tokenizer, params["prompt"])
|
output = worker.get_embeddings(params["prompt"])
|
||||||
return {"response": [float(x) for x in output]}
|
return {"response": [float(x) for x in output]}
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
model_path = LLM_MODEL_CONFIG[CFG.LLM_MODEL]
|
||||||
|
print(model_path, DEVICE)
|
||||||
|
|
||||||
|
|
||||||
|
worker = ModelWorker(
|
||||||
|
model_path=model_path,
|
||||||
|
model_name=CFG.LLM_MODEL,
|
||||||
|
device=DEVICE,
|
||||||
|
num_gpus=1
|
||||||
|
)
|
||||||
|
|
||||||
uvicorn.run(app, host="0.0.0.0", port=CFG.MODEL_PORT, log_level="info")
|
uvicorn.run(app, host="0.0.0.0", port=CFG.MODEL_PORT, log_level="info")
|
@ -364,8 +364,16 @@ def http_bot(state, mode, sql_mode, db_selector, temperature, max_new_tokens, re
|
|||||||
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
|
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
|
||||||
if chunk:
|
if chunk:
|
||||||
data = json.loads(chunk.decode())
|
data = json.loads(chunk.decode())
|
||||||
|
|
||||||
|
""" TODO Multi mode output handler, rewrite this for multi model, use adapter mode.
|
||||||
|
"""
|
||||||
if data["error_code"] == 0:
|
if data["error_code"] == 0:
|
||||||
output = data["text"][skip_echo_len:].strip()
|
|
||||||
|
if "vicuna" in CFG.LLM_MODEL:
|
||||||
|
output = data["text"][skip_echo_len:].strip()
|
||||||
|
else:
|
||||||
|
output = data["text"].strip()
|
||||||
|
|
||||||
output = post_process_code(output)
|
output = post_process_code(output)
|
||||||
state.messages[-1][-1] = output + "▌"
|
state.messages[-1][-1] = output + "▌"
|
||||||
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
|
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
|
||||||
|
@ -42,6 +42,7 @@ tenacity==8.2.2
|
|||||||
peft
|
peft
|
||||||
pycocoevalcap
|
pycocoevalcap
|
||||||
sentence-transformers
|
sentence-transformers
|
||||||
|
cpm_kernels
|
||||||
umap-learn
|
umap-learn
|
||||||
notebook
|
notebook
|
||||||
gradio==3.23
|
gradio==3.23
|
||||||
|
Loading…
Reference in New Issue
Block a user