update:vector store config

This commit is contained in:
aries-ckt 2023-05-23 22:06:07 +08:00
parent 90b793f40e
commit ef64935145
5 changed files with 25 additions and 26 deletions

View File

@ -109,6 +109,14 @@ class Config(metaclass=Singleton):
self.MODEL_SERVER = os.getenv("MODEL_SERVER", "http://127.0.0.1" + ":" + str(self.MODEL_PORT))
self.ISLOAD_8BIT = os.getenv("ISLOAD_8BIT", "True") == "True"
### Vector Store Configuration
self.VECTOR_STORE_TYPE = os.getenv("VECTOR_STORE_TYPE", "Chroma")
self.MILVUS_URL = os.getenv("MILVUS_URL", "127.0.0.1")
self.MILVUS_PORT = os.getenv("MILVUS_PORT", "19530")
self.MILVUS_USERNAME = os.getenv("MILVUS_USERNAME", None)
self.MILVUS_PASSWORD = os.getenv("MILVUS_PASSWORD", None)
def set_debug_mode(self, value: bool) -> None:
"""Set the debug mode value"""
self.debug_mode = value

View File

@ -47,8 +47,4 @@ ISDEBUG = False
VECTOR_SEARCH_TOP_K = 10
VS_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "vs_store")
KNOWLEDGE_UPLOAD_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "data")
KNOWLEDGE_CHUNK_SPLIT_SIZE = 100
#vector db type, now provided Chroma and Milvus
VECTOR_STORE_TYPE = "Milvus"
#vector db config
VECTOR_STORE_CONFIG = {"url": "127.0.0.1", "port": "19530"}
KNOWLEDGE_CHUNK_SPLIT_SIZE = 100

View File

@ -3,6 +3,8 @@ import os
from bs4 import BeautifulSoup
from langchain.document_loaders import TextLoader, markdown
from langchain.embeddings import HuggingFaceEmbeddings
from pilot.configs.config import Config
from pilot.configs.model_config import DATASETS_DIR, KNOWLEDGE_CHUNK_SPLIT_SIZE, VECTOR_STORE_TYPE
from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter
from pilot.source_embedding.csv_embedding import CSVEmbedding
@ -13,6 +15,7 @@ import markdown
from pilot.source_embedding.pdf_loader import UnstructuredPaddlePDFLoader
from pilot.vector_store.connector import VectorStoreConnector
CFG = Config()
class KnowledgeEmbedding:
def __init__(self, file_path, model_name, vector_store_config, local_persist=True):
@ -53,7 +56,7 @@ class KnowledgeEmbedding:
def knowledge_persist_initialization(self, append_mode):
documents = self._load_knownlege(self.file_path)
self.vector_client = VectorStoreConnector(VECTOR_STORE_TYPE, self.vector_store_config)
self.vector_client = VectorStoreConnector(CFG.VECTOR_STORE_TYPE, self.vector_store_config)
self.vector_client.load_document(documents)
return self.vector_client

View File

@ -4,10 +4,12 @@ from abc import ABC, abstractmethod
from langchain.embeddings import HuggingFaceEmbeddings
from typing import List, Optional, Dict
from pilot.configs.model_config import VECTOR_STORE_TYPE
from pilot.configs.config import Config
from pilot.vector_store.connector import VectorStoreConnector
registered_methods = []
CFG = Config()
def register(method):
@ -30,7 +32,7 @@ class SourceEmbedding(ABC):
self.embeddings = HuggingFaceEmbeddings(model_name=self.model_name)
vector_store_config["embeddings"] = self.embeddings
self.vector_client = VectorStoreConnector(VECTOR_STORE_TYPE, vector_store_config)
self.vector_client = VectorStoreConnector(CFG.VECTOR_STORE_TYPE, vector_store_config)
@abstractmethod
@register

View File

@ -2,11 +2,12 @@ from typing import List, Optional, Iterable, Tuple, Any
from pymilvus import connections, Collection, DataType
from pilot.configs.model_config import VECTOR_STORE_CONFIG
from langchain.docstore.document import Document
from pilot.configs.config import Config
from pilot.vector_store.vector_store_base import VectorStoreBase
CFG = Config()
class MilvusStore(VectorStoreBase):
"""Milvus database"""
def __init__(self, ctx: {}) -> None:
@ -18,11 +19,10 @@ class MilvusStore(VectorStoreBase):
# self.configure(cfg)
connect_kwargs = {}
self.uri = None
self.uri = ctx.get("url", VECTOR_STORE_CONFIG["url"])
self.port = ctx.get("port", VECTOR_STORE_CONFIG["port"])
self.username = ctx.get("username", None)
self.password = ctx.get("password", None)
self.uri = CFG.MILVUS_URL
self.port = CFG.MILVUS_PORT
self.username = CFG.MILVUS_USERNAME
self.password = CFG.MILVUS_PASSWORD
self.collection_name = ctx.get("vector_store_name", None)
self.secure = ctx.get("secure", None)
self.embedding = ctx.get("embeddings", None)
@ -238,16 +238,6 @@ class MilvusStore(VectorStoreBase):
timeout: Optional[int] = None,
) -> List[str]:
"""add text data into Milvus.
Args:
texts (Iterable[str]): The text being embedded and inserted.
metadatas (Optional[List[dict]], optional): The metadata that
corresponds to each insert. Defaults to None.
partition_name (str, optional): The partition of the collection
to insert data into. Defaults to None.
timeout: specified timeout.
Returns:
List[str]: The resulting keys for each inserted element.
"""
insert_dict: Any = {self.text_field: list(texts)}
try:
@ -279,6 +269,7 @@ class MilvusStore(VectorStoreBase):
self.init_schema_and_load(self.collection_name, documents)
def similar_search(self, text, topk) -> None:
"""similar_search in vector database."""
self.col = Collection(self.collection_name)
schema = self.col.schema
for x in schema.fields:
@ -326,7 +317,6 @@ class MilvusStore(VectorStoreBase):
timeout=timeout,
**kwargs,
)
# Organize results.
ret = []
for result in res[0]:
meta = {x: result.entity.get(x) for x in output_fields}