chore: update create chroma store param (#2798)

This commit is contained in:
alanchen 2025-06-27 18:01:32 +08:00 committed by GitHub
parent bf6f38906d
commit f423b1fb2c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 38 additions and 42 deletions

View File

@ -57,12 +57,10 @@ from dbgpt_ext.storage.vector_store.chroma_store import ChromaVectorConfig, Chro
shutil.rmtree("/tmp/tmp_ltm_vector_store", ignore_errors=True)
vector_store = ChromaStore(
ChromaVectorConfig(
embedding_fn=embeddings,
vector_store_config=ChromaVectorConfig(
name="ltm_vector_store",
persist_path="/tmp/tmp_ltm_vector_store",
),
)
persist_path="/tmp/tmp_ltm_vector_store",
),
name="ltm_vector_store",
embedding_fn=embeddings
)
```

View File

@ -47,13 +47,11 @@ from dbgpt_ext.storage.vector_store.chroma_store import ChromaVectorConfig, Chro
# Delete old vector store directory(/tmp/tmp_ltm_vector_stor)
shutil.rmtree("/tmp/tmp_ltm_vector_store", ignore_errors=True)
vector_store = ChromaStore(
ChromaVectorConfig(
embedding_fn=embeddings,
vector_store_config=ChromaVectorConfig(
name="ltm_vector_store",
persist_path="/tmp/tmp_ltm_vector_store",
),
)
vector_store_config=ChromaVectorConfig(
persist_path="/tmp/tmp_ltm_vector_store",
),
name="ltm_vector_store",
embedding_fn=embeddings,
)
```

View File

@ -11,7 +11,7 @@ In this example, we will load your knowledge from a URL and store it in a vector
First, you need to install the `dbgpt` library.
```bash
pip install "dbgpt[rag]>=0.5.2"
pip install "dbgpt[agent,simple_framework, client]>=0.7.1" "dbgpt_ext>=0.7.1" -U
````
### Prepare Embedding Model
@ -84,10 +84,10 @@ shutil.rmtree("/tmp/awel_rag_test_vector_store", ignore_errors=True)
vector_store = ChromaStore(
vector_store_config=ChromaVectorConfig(
name="test_vstore",
persist_path="/tmp/awel_rag_test_vector_store",
embedding_fn=embeddings
)
persist_path="/tmp/awel_rag_test_vector_store"
),
name="test_vstore",
embedding_fn=embeddings
)
with DAG("load_knowledge_dag") as knowledge_dag:
@ -274,10 +274,10 @@ shutil.rmtree("/tmp/awel_rag_test_vector_store", ignore_errors=True)
vector_store = ChromaStore(
vector_store_config=ChromaVectorConfig(
name="test_vstore",
persist_path="/tmp/awel_rag_test_vector_store",
embedding_fn=embeddings
),
name="test_vstore",
embedding_fn=embeddings
)
with DAG("load_knowledge_dag") as knowledge_dag:

View File

@ -29,7 +29,8 @@ In this guide, we mainly focus on step 1, 2, and 3.
First, you need to install the `dbgpt` library.
```bash
pip install "dbgpt[rag]>=0.7.0" -U
pip install "dbgpt[rag, agent, client, simple_framework]>=0.7.0" "dbgpt_ext>=0.7.0" -U
pip install openai
````
## Build Knowledge Base
@ -92,9 +93,9 @@ shutil.rmtree("/tmp/awel_with_data_vector_store", ignore_errors=True)
vector_store = ChromaStore(
ChromaVectorConfig(
persist_path="/tmp/tmp_ltm_vector_store",
name="ltm_vector_store",
embedding_fn=embeddings,
)
),
name="ltm_vector_store",
embedding_fn=embeddings,
)
with DAG("load_schema_dag") as load_schema_dag:
@ -102,7 +103,7 @@ with DAG("load_schema_dag") as load_schema_dag:
# Load database schema to vector store
assembler_task = DBSchemaAssemblerOperator(
connector=db_conn,
index_store=vector_store,
table_vector_store_connector=vector_store,
chunk_parameters=ChunkParameters(chunk_strategy="CHUNK_BY_SIZE")
)
input_task >> assembler_task
@ -122,7 +123,8 @@ with DAG("retrieve_schema_dag") as retrieve_schema_dag:
# Retrieve database schema from vector store
retriever_task = DBSchemaRetrieverOperator(
top_k=1,
index_store=vector_store,
table_vector_store_connector=vector_store,
field_vector_store_connector=vector_store
)
input_task >> retriever_task
@ -487,10 +489,10 @@ db_conn.create_temp_tables(
vector_store = ChromaStore(
ChromaVectorConfig(
embedding_fn=embeddings,
name="db_schema_vector_store",
persist_path="/tmp/awel_with_data_vector_store",
)
),
embedding_fn=embeddings,
name="db_schema_vector_store",
)
antv_charts = [
@ -623,7 +625,7 @@ with DAG("load_schema_dag") as load_schema_dag:
# Load database schema to vector store
assembler_task = DBSchemaAssemblerOperator(
connector=db_conn,
index_store=vector_store,
table_vector_store_connector=vector_store,
chunk_parameters=ChunkParameters(chunk_strategy="CHUNK_BY_SIZE"),
)
input_task >> assembler_task

View File

@ -51,16 +51,16 @@ INPUT_PROMPT = "\n###Input:\n{}\n###Response:"
def _create_vector_connector():
"""Create vector connector."""
config = ChromaVectorConfig(
persist_path=PILOT_PATH,
config = ChromaVectorConfig(persist_path=PILOT_PATH)
return ChromaStore(
config,
name="embedding_rag_test",
embedding_fn=DefaultEmbeddingFactory(
default_model_name=os.path.join(MODEL_PATH, "text2vec-large-chinese"),
).create(),
)
return ChromaStore(config)
def _create_temporary_connection():
"""Create a temporary database connection for testing."""

View File

@ -60,12 +60,12 @@ db_conn.create_temp_tables(
}
)
config = ChromaVectorConfig(
persist_path=PILOT_PATH,
config = ChromaVectorConfig(persist_path=PILOT_PATH)
vector_store = ChromaStore(
config,
name="db_schema_vector_store",
embedding_fn=embeddings,
)
vector_store = ChromaStore(config)
antv_charts = [
{"response_line_chart": "used to display comparative trend analysis data"},

View File

@ -94,11 +94,9 @@ class HybridMemory(Memory, Generic[T]):
vstore_path = vstore_path or os.path.join(DATA_DIR, "agent_memory")
vector_store = ChromaStore(
ChromaVectorConfig(
name=vstore_name,
persist_path=vstore_path,
embedding_fn=embeddings,
)
ChromaVectorConfig(persist_path=vstore_path),
name=vstore_name,
embedding_fn=embeddings,
)
return cls.from_vstore(
vector_store=vector_store,