mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-09 04:08:10 +00:00
chore: update create chroma store param (#2798)
This commit is contained in:
parent
bf6f38906d
commit
f423b1fb2c
@ -57,12 +57,10 @@ from dbgpt_ext.storage.vector_store.chroma_store import ChromaVectorConfig, Chro
|
|||||||
shutil.rmtree("/tmp/tmp_ltm_vector_store", ignore_errors=True)
|
shutil.rmtree("/tmp/tmp_ltm_vector_store", ignore_errors=True)
|
||||||
vector_store = ChromaStore(
|
vector_store = ChromaStore(
|
||||||
ChromaVectorConfig(
|
ChromaVectorConfig(
|
||||||
embedding_fn=embeddings,
|
|
||||||
vector_store_config=ChromaVectorConfig(
|
|
||||||
name="ltm_vector_store",
|
|
||||||
persist_path="/tmp/tmp_ltm_vector_store",
|
persist_path="/tmp/tmp_ltm_vector_store",
|
||||||
),
|
),
|
||||||
)
|
name="ltm_vector_store",
|
||||||
|
embedding_fn=embeddings
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -47,13 +47,11 @@ from dbgpt_ext.storage.vector_store.chroma_store import ChromaVectorConfig, Chro
|
|||||||
# Delete old vector store directory(/tmp/tmp_ltm_vector_stor)
|
# Delete old vector store directory(/tmp/tmp_ltm_vector_stor)
|
||||||
shutil.rmtree("/tmp/tmp_ltm_vector_store", ignore_errors=True)
|
shutil.rmtree("/tmp/tmp_ltm_vector_store", ignore_errors=True)
|
||||||
vector_store = ChromaStore(
|
vector_store = ChromaStore(
|
||||||
ChromaVectorConfig(
|
|
||||||
embedding_fn=embeddings,
|
|
||||||
vector_store_config=ChromaVectorConfig(
|
vector_store_config=ChromaVectorConfig(
|
||||||
name="ltm_vector_store",
|
|
||||||
persist_path="/tmp/tmp_ltm_vector_store",
|
persist_path="/tmp/tmp_ltm_vector_store",
|
||||||
),
|
),
|
||||||
)
|
name="ltm_vector_store",
|
||||||
|
embedding_fn=embeddings,
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -11,7 +11,7 @@ In this example, we will load your knowledge from a URL and store it in a vector
|
|||||||
First, you need to install the `dbgpt` library.
|
First, you need to install the `dbgpt` library.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
pip install "dbgpt[rag]>=0.5.2"
|
pip install "dbgpt[agent,simple_framework, client]>=0.7.1" "dbgpt_ext>=0.7.1" -U
|
||||||
````
|
````
|
||||||
|
|
||||||
### Prepare Embedding Model
|
### Prepare Embedding Model
|
||||||
@ -84,11 +84,11 @@ shutil.rmtree("/tmp/awel_rag_test_vector_store", ignore_errors=True)
|
|||||||
|
|
||||||
vector_store = ChromaStore(
|
vector_store = ChromaStore(
|
||||||
vector_store_config=ChromaVectorConfig(
|
vector_store_config=ChromaVectorConfig(
|
||||||
|
persist_path="/tmp/awel_rag_test_vector_store"
|
||||||
|
),
|
||||||
name="test_vstore",
|
name="test_vstore",
|
||||||
persist_path="/tmp/awel_rag_test_vector_store",
|
|
||||||
embedding_fn=embeddings
|
embedding_fn=embeddings
|
||||||
)
|
)
|
||||||
)
|
|
||||||
|
|
||||||
with DAG("load_knowledge_dag") as knowledge_dag:
|
with DAG("load_knowledge_dag") as knowledge_dag:
|
||||||
# Load knowledge from URL
|
# Load knowledge from URL
|
||||||
@ -274,10 +274,10 @@ shutil.rmtree("/tmp/awel_rag_test_vector_store", ignore_errors=True)
|
|||||||
|
|
||||||
vector_store = ChromaStore(
|
vector_store = ChromaStore(
|
||||||
vector_store_config=ChromaVectorConfig(
|
vector_store_config=ChromaVectorConfig(
|
||||||
name="test_vstore",
|
|
||||||
persist_path="/tmp/awel_rag_test_vector_store",
|
persist_path="/tmp/awel_rag_test_vector_store",
|
||||||
embedding_fn=embeddings
|
|
||||||
),
|
),
|
||||||
|
name="test_vstore",
|
||||||
|
embedding_fn=embeddings
|
||||||
)
|
)
|
||||||
|
|
||||||
with DAG("load_knowledge_dag") as knowledge_dag:
|
with DAG("load_knowledge_dag") as knowledge_dag:
|
||||||
|
@ -29,7 +29,8 @@ In this guide, we mainly focus on step 1, 2, and 3.
|
|||||||
First, you need to install the `dbgpt` library.
|
First, you need to install the `dbgpt` library.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
pip install "dbgpt[rag]>=0.7.0" -U
|
pip install "dbgpt[rag, agent, client, simple_framework]>=0.7.0" "dbgpt_ext>=0.7.0" -U
|
||||||
|
pip install openai
|
||||||
````
|
````
|
||||||
|
|
||||||
## Build Knowledge Base
|
## Build Knowledge Base
|
||||||
@ -92,17 +93,17 @@ shutil.rmtree("/tmp/awel_with_data_vector_store", ignore_errors=True)
|
|||||||
vector_store = ChromaStore(
|
vector_store = ChromaStore(
|
||||||
ChromaVectorConfig(
|
ChromaVectorConfig(
|
||||||
persist_path="/tmp/tmp_ltm_vector_store",
|
persist_path="/tmp/tmp_ltm_vector_store",
|
||||||
|
),
|
||||||
name="ltm_vector_store",
|
name="ltm_vector_store",
|
||||||
embedding_fn=embeddings,
|
embedding_fn=embeddings,
|
||||||
)
|
)
|
||||||
)
|
|
||||||
|
|
||||||
with DAG("load_schema_dag") as load_schema_dag:
|
with DAG("load_schema_dag") as load_schema_dag:
|
||||||
input_task = InputOperator.dummy_input()
|
input_task = InputOperator.dummy_input()
|
||||||
# Load database schema to vector store
|
# Load database schema to vector store
|
||||||
assembler_task = DBSchemaAssemblerOperator(
|
assembler_task = DBSchemaAssemblerOperator(
|
||||||
connector=db_conn,
|
connector=db_conn,
|
||||||
index_store=vector_store,
|
table_vector_store_connector=vector_store,
|
||||||
chunk_parameters=ChunkParameters(chunk_strategy="CHUNK_BY_SIZE")
|
chunk_parameters=ChunkParameters(chunk_strategy="CHUNK_BY_SIZE")
|
||||||
)
|
)
|
||||||
input_task >> assembler_task
|
input_task >> assembler_task
|
||||||
@ -122,7 +123,8 @@ with DAG("retrieve_schema_dag") as retrieve_schema_dag:
|
|||||||
# Retrieve database schema from vector store
|
# Retrieve database schema from vector store
|
||||||
retriever_task = DBSchemaRetrieverOperator(
|
retriever_task = DBSchemaRetrieverOperator(
|
||||||
top_k=1,
|
top_k=1,
|
||||||
index_store=vector_store,
|
table_vector_store_connector=vector_store,
|
||||||
|
field_vector_store_connector=vector_store
|
||||||
)
|
)
|
||||||
input_task >> retriever_task
|
input_task >> retriever_task
|
||||||
|
|
||||||
@ -487,10 +489,10 @@ db_conn.create_temp_tables(
|
|||||||
|
|
||||||
vector_store = ChromaStore(
|
vector_store = ChromaStore(
|
||||||
ChromaVectorConfig(
|
ChromaVectorConfig(
|
||||||
|
persist_path="/tmp/awel_with_data_vector_store",
|
||||||
|
),
|
||||||
embedding_fn=embeddings,
|
embedding_fn=embeddings,
|
||||||
name="db_schema_vector_store",
|
name="db_schema_vector_store",
|
||||||
persist_path="/tmp/awel_with_data_vector_store",
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
|
|
||||||
antv_charts = [
|
antv_charts = [
|
||||||
@ -623,7 +625,7 @@ with DAG("load_schema_dag") as load_schema_dag:
|
|||||||
# Load database schema to vector store
|
# Load database schema to vector store
|
||||||
assembler_task = DBSchemaAssemblerOperator(
|
assembler_task = DBSchemaAssemblerOperator(
|
||||||
connector=db_conn,
|
connector=db_conn,
|
||||||
index_store=vector_store,
|
table_vector_store_connector=vector_store,
|
||||||
chunk_parameters=ChunkParameters(chunk_strategy="CHUNK_BY_SIZE"),
|
chunk_parameters=ChunkParameters(chunk_strategy="CHUNK_BY_SIZE"),
|
||||||
)
|
)
|
||||||
input_task >> assembler_task
|
input_task >> assembler_task
|
||||||
|
@ -51,16 +51,16 @@ INPUT_PROMPT = "\n###Input:\n{}\n###Response:"
|
|||||||
|
|
||||||
def _create_vector_connector():
|
def _create_vector_connector():
|
||||||
"""Create vector connector."""
|
"""Create vector connector."""
|
||||||
config = ChromaVectorConfig(
|
config = ChromaVectorConfig(persist_path=PILOT_PATH)
|
||||||
persist_path=PILOT_PATH,
|
|
||||||
|
return ChromaStore(
|
||||||
|
config,
|
||||||
name="embedding_rag_test",
|
name="embedding_rag_test",
|
||||||
embedding_fn=DefaultEmbeddingFactory(
|
embedding_fn=DefaultEmbeddingFactory(
|
||||||
default_model_name=os.path.join(MODEL_PATH, "text2vec-large-chinese"),
|
default_model_name=os.path.join(MODEL_PATH, "text2vec-large-chinese"),
|
||||||
).create(),
|
).create(),
|
||||||
)
|
)
|
||||||
|
|
||||||
return ChromaStore(config)
|
|
||||||
|
|
||||||
|
|
||||||
def _create_temporary_connection():
|
def _create_temporary_connection():
|
||||||
"""Create a temporary database connection for testing."""
|
"""Create a temporary database connection for testing."""
|
||||||
|
@ -60,12 +60,12 @@ db_conn.create_temp_tables(
|
|||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
config = ChromaVectorConfig(
|
config = ChromaVectorConfig(persist_path=PILOT_PATH)
|
||||||
persist_path=PILOT_PATH,
|
vector_store = ChromaStore(
|
||||||
|
config,
|
||||||
name="db_schema_vector_store",
|
name="db_schema_vector_store",
|
||||||
embedding_fn=embeddings,
|
embedding_fn=embeddings,
|
||||||
)
|
)
|
||||||
vector_store = ChromaStore(config)
|
|
||||||
|
|
||||||
antv_charts = [
|
antv_charts = [
|
||||||
{"response_line_chart": "used to display comparative trend analysis data"},
|
{"response_line_chart": "used to display comparative trend analysis data"},
|
||||||
|
@ -94,12 +94,10 @@ class HybridMemory(Memory, Generic[T]):
|
|||||||
vstore_path = vstore_path or os.path.join(DATA_DIR, "agent_memory")
|
vstore_path = vstore_path or os.path.join(DATA_DIR, "agent_memory")
|
||||||
|
|
||||||
vector_store = ChromaStore(
|
vector_store = ChromaStore(
|
||||||
ChromaVectorConfig(
|
ChromaVectorConfig(persist_path=vstore_path),
|
||||||
name=vstore_name,
|
name=vstore_name,
|
||||||
persist_path=vstore_path,
|
|
||||||
embedding_fn=embeddings,
|
embedding_fn=embeddings,
|
||||||
)
|
)
|
||||||
)
|
|
||||||
return cls.from_vstore(
|
return cls.from_vstore(
|
||||||
vector_store=vector_store,
|
vector_store=vector_store,
|
||||||
embeddings=embeddings,
|
embeddings=embeddings,
|
||||||
|
Loading…
Reference in New Issue
Block a user