diff --git a/README.md b/README.md
index f7dfd6524..8dd86b6e3 100644
--- a/README.md
+++ b/README.md
@@ -3,6 +3,8 @@ A Open Database-GPT Experiment

+DB-GPT 是一个实验性的开源应用程序,它基于FastChat,并使用vicuna-13b作为基础模型。此外,此程序结合了langchain和llama-index基于现有知识库进行In-Context Learning来对其进行数据库相关知识的增强。它可以进行SQL生成、SQL诊断、数据库知识问答等一系列的工作。
+
DB-GPT is an experimental open-source application that builds upon the fastchat model and uses vicuna as its base model. Additionally, it looks like this application incorporates langchain and llama-index embedding knowledge to improve Database-QA capabilities.
@@ -14,21 +16,26 @@ Run on an RTX 4090 GPU (The origin mov not sped up!, [YouTube地址](https://www

- SQL生成示例
+首先选择对应的数据库, 然后模型即可根据对应的数据库Schema信息生成SQL
-
+
- 数据库QA示例
# Install
-1. Run model server
+1. 基础模型下载
+关于基础模型, 可以根据[vicuna](https://github.com/lm-sys/FastChat/blob/main/README.md#model-weights)合成教程进行合成。
+如果此步有困难的同学,也可以直接使用[Hugging Face](https://huggingface.co/)上的模型进行替代。 替代模型: [vicuna-13b](https://huggingface.co/Tribbiani/vicuna-13b)
+
+2. Run model server
```
cd pilot/server
python vicuna_server.py
```
-2. Run gradio webui
+3. Run gradio webui
```
python webserver.py
```
@@ -37,3 +44,5 @@ python webserver.py
- SQL-Generate
- Database-QA Based Knowledge
- SQL-diagnosis
+
+总的来说,它是一个用于数据库的复杂且创新的AI工具。如果您对如何在工作中使用或实施DB-GPT有任何具体问题,请联系我, 我会尽力提供帮助, 同时也欢迎大家参与到项目建设中, 做一些有趣的事情。
diff --git a/asserts/SQLGEN.png b/asserts/SQLGEN.png
new file mode 100644
index 000000000..cac479364
Binary files /dev/null and b/asserts/SQLGEN.png differ
diff --git a/pilot/app.py b/pilot/app.py
index 6a7a76f3d..5456621f2 100644
--- a/pilot/app.py
+++ b/pilot/app.py
@@ -33,12 +33,22 @@ def knowledged_qa_demo(text_list):
def get_answer(q):
- base_knowledge = """ 这是一段测试文字 """
+ base_knowledge = """ """
text_list = [base_knowledge]
index = knowledged_qa_demo(text_list)
response = index.query(q)
return response.response
+def get_similar(q):
+ from pilot.vector_store.extract_tovec import knownledge_tovec
+ docsearch = knownledge_tovec("./datasets/plan.md")
+ docs = docsearch.similarity_search_with_score(q, k=1)
+
+ for doc in docs:
+ dc, s = doc
+ print(dc.page_content)
+ yield dc.page_content
+
if __name__ == "__main__":
# agent_demo()
@@ -49,7 +59,7 @@ if __name__ == "__main__":
text_output = gr.TextArea()
text_button = gr.Button()
- text_button.click(get_answer, inputs=text_input, outputs=text_output)
+ text_button.click(get_similar, inputs=text_input, outputs=text_output)
demo.queue(concurrency_count=3).launch(server_name="0.0.0.0")
diff --git a/pilot/chain/__init__.py b/pilot/chain/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/pilot/client/__init__.py b/pilot/client/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/pilot/common/__init__.py b/pilot/common/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/pilot/configs/model_config.py b/pilot/configs/model_config.py
index 80b1dabe4..ad8eb83c1 100644
--- a/pilot/configs/model_config.py
+++ b/pilot/configs/model_config.py
@@ -25,3 +25,11 @@ vicuna_model_server = "http://192.168.31.114:8000"
# Load model config
isload_8bit = True
isdebug = False
+
+
+DB_SETTINGS = {
+ "user": "root",
+ "password": "********",
+ "host": "localhost",
+ "port": 3306
+}
\ No newline at end of file
diff --git a/pilot/connections/mysql_conn.py b/pilot/connections/mysql_conn.py
index 1f776fc63..2dfff2ee7 100644
--- a/pilot/connections/mysql_conn.py
+++ b/pilot/connections/mysql_conn.py
@@ -1,2 +1,42 @@
#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
\ No newline at end of file
+# -*- coding: utf-8 -*-
+
+import pymysql
+
+class MySQLOperator:
+ """Connect MySQL Database fetch MetaData For LLM Prompt """
+
+ default_db = ["information_schema", "performance_schema", "sys", "mysql"]
+ def __init__(self, user, password, host="localhost", port=3306) -> None:
+
+ self.conn = pymysql.connect(
+ host=host,
+ user=user,
+ passwd=password,
+ charset="utf8mb4",
+ cursorclass=pymysql.cursors.DictCursor
+ )
+
+ def get_schema(self, schema_name):
+
+ with self.conn.cursor() as cursor:
+ _sql = f"""
+ select concat(table_name, "(" , group_concat(column_name), ")") as schema_info from information_schema.COLUMNS where table_schema="{schema_name}" group by TABLE_NAME;
+ """
+ cursor.execute(_sql)
+ results = cursor.fetchall()
+ return results
+
+ def get_db_list(self):
+ with self.conn.cursor() as cursor:
+ _sql = """
+ show databases;
+ """
+ cursor.execute(_sql)
+ results = cursor.fetchall()
+
+ dbs = [d["Database"] for d in results if d["Database"] not in self.default_db]
+ return dbs
+
+
+
diff --git a/pilot/conversation.py b/pilot/conversation.py
index 8e172e7dd..e88ceaccb 100644
--- a/pilot/conversation.py
+++ b/pilot/conversation.py
@@ -4,7 +4,7 @@
import dataclasses
from enum import auto, Enum
from typing import List, Any
-
+from pilot.configs.model_config import DB_SETTINGS
class SeparatorStyle(Enum):
@@ -88,6 +88,19 @@ class Conversation:
}
+def gen_sqlgen_conversation(dbname):
+ from pilot.connections.mysql_conn import MySQLOperator
+ mo = MySQLOperator(
+ **DB_SETTINGS
+ )
+
+ message = ""
+
+ schemas = mo.get_schema(dbname)
+ for s in schemas:
+ message += s["schema_info"] + ";"
+ return f"数据库{dbname}的Schema信息如下: {message}\n"
+
conv_one_shot = Conversation(
system="A chat between a curious human and an artificial intelligence assistant, who very familiar with database related knowledge. "
"The assistant gives helpful, detailed, professional and polite answers to the human's questions. ",
@@ -121,7 +134,7 @@ conv_one_shot = Conversation(
sep_style=SeparatorStyle.SINGLE,
sep="###"
)
-
+
conv_vicuna_v1 = Conversation(
system = "A chat between a curious user and an artificial intelligence assistant. who very familiar with database related knowledge. "
"The assistant gives helpful, detailed, professional and polite answers to the user's questions. ",
@@ -137,5 +150,10 @@ default_conversation = conv_one_shot
conv_templates = {
"conv_one_shot": conv_one_shot,
- "vicuna_v1": conv_vicuna_v1
+ "vicuna_v1": conv_vicuna_v1,
}
+
+
+if __name__ == "__main__":
+ message = gen_sqlgen_conversation("dbgpt")
+ print(message)
\ No newline at end of file
diff --git a/pilot/data/__init__.py b/pilot/data/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/pilot/datasets/__init__.py b/pilot/datasets/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/pilot/datasets/plan.md b/pilot/datasets/plan.md
new file mode 100644
index 000000000..c8255e084
--- /dev/null
+++ b/pilot/datasets/plan.md
@@ -0,0 +1,185 @@
+执行计划是对一条 SQL 查询语句在数据库中执行过程的描述。用户可以通过 EXPLAIN 命令查看优化器针对指定 SQL 生成的逻辑执行计划。
+
+如果要分析某条 SQL 的性能问题,通常需要先查看 SQL 的执行计划,排查每一步 SQL 执行是否存在问题。所以读懂执行计划是 SQL 优化的先决条件,而了解执行计划的算子是理解 EXPLAIN 命令的关键。
+
+OceanBase 数据库的执行计划命令有三种模式:EXPLAIN BASIC、EXPLAIN 和 EXPLAIN EXTENDED。这三种模式对执行计划展现不同粒度的细节信息:
+
+EXPLAIN BASIC 命令用于最基本的计划展示。
+
+EXPLAIN EXTENDED 命令用于最详细的计划展示(通常在排查问题时使用这种展示模式)。
+
+EXPLAIN 命令所展示的信息可以帮助普通用户了解整个计划的执行方式。
+
+EXPLAIN 命令格式如下:
+EXPLAIN [BASIC | EXTENDED | PARTITIONS | FORMAT = format_name] [PRETTY | PRETTY_COLOR] explainable_stmt
+format_name:
+{ TRADITIONAL | JSON }
+explainable_stmt:
+{ SELECT st
+| DELETE statement
+| INSERT statement
+| REPLACE statement
+| UPDATE statement }
+
+
+EXPLAIN 命令适用于 SELECT、DELETE、INSERT、REPLACE 和 UPDATE 语句,显示优化器所提供的有关语句执行计划的信息,包括如何处理该语句,如何联接表以及以何种顺序联接表等信息。
+
+一般来说,可以使用 EXPLAIN EXTENDED 命令,将表扫描的范围段展示出来。使用 EXPLAIN OUTLINE 命令可以显示 Outline 信息。
+
+FORMAT 选项可用于选择输出格式。TRADITIONAL 表示以表格格式显示输出,这也是默认设置。JSON 表示以 JSON 格式显示信息。
+
+使用 EXPLAIN PARTITITIONS 也可用于检查涉及分区表的查询。如果检查针对非分区表的查询,则不会产生错误,但 PARTIONS 列的值始终为 NULL。
+
+对于复杂的执行计划,可以使用 PRETTY 或者 PRETTY_COLOR 选项将计划树中的父节点和子节点使用树线或彩色树线连接起来,使得执行计划展示更方便阅读。示例如下:
+obclient> CREATE TABLE p1table(c1 INT ,c2 INT) PARTITION BY HASH(c1) PARTITIONS 2;
+Query OK, 0 rows affected
+
+obclient> CREATE TABLE p2table(c1 INT ,c2 INT) PARTITION BY HASH(c1) PARTITIONS 4;
+Query OK, 0 rows affected
+
+obclient> EXPLAIN EXTENDED PRETTY_COLOR SELECT * FROM p1table p1 JOIN p2table p2 ON p1.c1=p2.c2\G
+*************************** 1. row ***************************
+Query Plan: ==========================================================
+|ID|OPERATOR |NAME |EST. ROWS|COST|
+----------------------------------------------------------
+|0 |PX COORDINATOR | |1 |278 |
+|1 | EXCHANGE OUT DISTR |:EX10001|1 |277 |
+|2 | HASH JOIN | |1 |276 |
+|3 | ├PX PARTITION ITERATOR | |1 |92 |
+|4 | │ TABLE SCAN |P1 |1 |92 |
+|5 | └EXCHANGE IN DISTR | |1 |184 |
+|6 | EXCHANGE OUT DISTR (PKEY)|:EX10000|1 |184 |
+|7 | PX PARTITION ITERATOR | |1 |183 |
+|8 | TABLE SCAN |P2 |1 |183 |
+==========================================================
+
+Outputs & filters:
+-------------------------------------
+0 - output([INTERNAL_FUNCTION(P1.C1, P1.C2, P2.C1, P2.C2)]), filter(nil)
+1 - output([INTERNAL_FUNCTION(P1.C1, P1.C2, P2.C1, P2.C2)]), filter(nil), dop=1
+2 - output([P1.C1], [P2.C2], [P1.C2], [P2.C1]), filter(nil),
+ equal_conds([P1.C1 = P2.C2]), other_conds(nil)
+3 - output([P1.C1], [P1.C2]), filter(nil)
+4 - output([P1.C1], [P1.C2]), filter(nil),
+ access([P1.C1], [P1.C2]), partitions(p[0-1])
+5 - output([P2.C2], [P2.C1]), filter(nil)
+6 - (#keys=1, [P2.C2]), output([P2.C2], [P2.C1]), filter(nil), dop=1
+7 - output([P2.C1], [P2.C2]), filter(nil)
+8 - output([P2.C1], [P2.C2]), filter(nil),
+ access([P2.C1], [P2.C2]), partitions(p[0-3])
+
+1 row in set
+
+
+
+
+## 执行计划形状与算子信息
+
+在数据库系统中,执行计划在内部通常是以树的形式来表示的,但是不同的数据库会选择不同的方式展示给用户。
+
+如下示例分别为 PostgreSQL 数据库、Oracle 数据库和 OceanBase 数据库对于 TPCDS Q3 的计划展示。
+
+```sql
+obclient> SELECT /*TPC-DS Q3*/ *
+ FROM (SELECT dt.d_year,
+ item.i_brand_id brand_id,
+ item.i_brand brand,
+ Sum(ss_net_profit) sum_agg
+ FROM date_dim dt,
+ store_sales,
+ item
+ WHERE dt.d_date_sk = store_sales.ss_sold_date_sk
+ AND store_sales.ss_item_sk = item.i_item_sk
+ AND item.i_manufact_id = 914
+ AND dt.d_moy = 11
+ GROUP BY dt.d_year,
+ item.i_brand,
+ item.i_brand_id
+ ORDER BY dt.d_year,
+ sum_agg DESC,
+ brand_id)
+ WHERE ROWNUM <= 100;
+
+PostgreSQL 数据库执行计划展示如下:
+Limit (cost=13986.86..13987.20 rows=27 width=91)
+ Sort (cost=13986.86..13986.93 rows=27 width=65)
+ Sort Key: dt.d_year, (sum(store_sales.ss_net_profit)), item.i_brand_id
+ HashAggregate (cost=13985.95..13986.22 rows=27 width=65)
+ Merge Join (cost=13884.21..13983.91 rows=204 width=65)
+ Merge Cond: (dt.d_date_sk = store_sales.ss_sold_date_sk)
+ Index Scan using date_dim_pkey on date_dim dt (cost=0.00..3494.62 rows=6080 width=8)
+ Filter: (d_moy = 11)
+ Sort (cost=12170.87..12177.27 rows=2560 width=65)
+ Sort Key: store_sales.ss_sold_date_sk
+ Nested Loop (cost=6.02..12025.94 rows=2560 width=65)
+ Seq Scan on item (cost=0.00..1455.00 rows=16 width=59)
+ Filter: (i_manufact_id = 914)
+ Bitmap Heap Scan on store_sales (cost=6.02..658.94 rows=174 width=14)
+ Recheck Cond: (ss_item_sk = item.i_item_sk)
+ Bitmap Index Scan on store_sales_pkey (cost=0.00..5.97 rows=174 width=0)
+ Index Cond: (ss_item_sk = item.i_item_sk)
+
+
+
+Oracle 数据库执行计划展示如下:
+Plan hash value: 2331821367
+--------------------------------------------------------------------------------------------------
+| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
+--------------------------------------------------------------------------------------------------
+| 0 | SELECT STATEMENT | | 100 | 9100 | 3688 (1)| 00:00:01 |
+|* 1 | COUNT STOPKEY | | | | | |
+| 2 | VIEW | | 2736 | 243K| 3688 (1)| 00:00:01 |
+|* 3 | SORT ORDER BY STOPKEY | | 2736 | 256K| 3688 (1)| 00:00:01 |
+| 4 | HASH GROUP BY | | 2736 | 256K| 3688 (1)| 00:00:01 |
+|* 5 | HASH JOIN | | 2736 | 256K| 3686 (1)| 00:00:01 |
+|* 6 | TABLE ACCESS FULL | DATE_DIM | 6087 | 79131 | 376 (1)| 00:00:01 |
+| 7 | NESTED LOOPS | | 2865 | 232K| 3310 (1)| 00:00:01 |
+| 8 | NESTED LOOPS | | 2865 | 232K| 3310 (1)| 00:00:01 |
+|* 9 | TABLE ACCESS FULL | ITEM | 18 | 1188 | 375 (0)| 00:00:01 |
+|* 10 | INDEX RANGE SCAN | SYS_C0010069 | 159 | | 2 (0)| 00:00:01 |
+| 11 | TABLE ACCESS BY INDEX ROWID| STORE_SALES | 159 | 2703 | 163 (0)| 00:00:01 |
+--------------------------------------------------------------------------------------------------
+
+OceanBase 数据库执行计划展示如下:
+|ID|OPERATOR |NAME |EST. ROWS|COST |
+-------------------------------------------------------
+|0 |LIMIT | |100 |81141|
+|1 | TOP-N SORT | |100 |81127|
+|2 | HASH GROUP BY | |2924 |68551|
+|3 | HASH JOIN | |2924 |65004|
+|4 | SUBPLAN SCAN |VIEW1 |2953 |19070|
+|5 | HASH GROUP BY | |2953 |18662|
+|6 | NESTED-LOOP JOIN| |2953 |15080|
+|7 | TABLE SCAN |ITEM |19 |11841|
+|8 | TABLE SCAN |STORE_SALES|161 |73 |
+|9 | TABLE SCAN |DT |6088 |29401|
+=======================================================
+
+由示例可见,OceanBase 数据库的计划展示与 Oracle 数据库类似。
+
+OceanBase 数据库执行计划中的各列的含义如下:
+列名 含义
+ID 执行树按照前序遍历的方式得到的编号(从 0 开始)。
+OPERATOR 操作算子的名称。
+NAME 对应表操作的表名(索引名)。
+EST. ROWS 估算该操作算子的输出行数。
+COST 该操作算子的执行代价(微秒)。
+
+
+OceanBase 数据库 EXPLAIN 命令输出的第一部分是执行计划的树形结构展示。其中每一个操作在树中的层次通过其在 operator 中的缩进予以展示,层次最深的优先执行,层次相同的以特定算子的执行顺序为标准来执行。
+
+问题: update a not exists (b…)
+我一开始以为 B是驱动表,B的数据挺多的 后来看到NLAJ,是说左边的表关联右边的表
+所以这个的驱动表是不是实际是A,用A的匹配B的,这个理解有问题吗
+
+回答: 没错 A 驱动 B的
+
+问题: 光知道最下最右的是驱动表了 所以一开始搞得有点懵 :sweat_smile:
+
+回答: nlj应该原理应该都是左表(驱动表)的记录探测右表(被驱动表), 选哪张成为左表或右表就基于一些其他考量了,比如数据量, 而anti join/semi join只是对 not exist/exist的一种优化,相关的原理和资料网上可以查阅一下
+
+问题: 也就是nlj 就是按照之前理解的谁先执行 谁就是驱动表 也就是执行计划中的最右的表
+而anti join/semi join,谁在not exist左面,谁就是驱动表。这么理解对吧
+
+回答: nlj也是左表的表是驱动表,这个要了解下计划执行方面的基本原理,取左表的一行数据,再遍历右表,一旦满足连接条件,就可以返回数据
+anti/semi只是因为not exists/exist的语义只是返回左表数据,改成anti join是一种计划优化,连接的方式比子查询更优
\ No newline at end of file
diff --git a/pilot/model/inference.py b/pilot/model/inference.py
index 60d443f95..71192e877 100644
--- a/pilot/model/inference.py
+++ b/pilot/model/inference.py
@@ -4,10 +4,10 @@
import torch
@torch.inference_mode()
-def generate_output(model, tokenizer, params, device, context_len=2048):
+def generate_output(model, tokenizer, params, device, context_len=2048, stream_interval=2):
prompt = params["prompt"]
temperature = float(params.get("temperature", 1.0))
- max_new_tokens = int(params.get("max_new_tokens", 256))
+ max_new_tokens = int(params.get("max_new_tokens", 1024))
stop_parameter = params.get("stop", None)
if stop_parameter == tokenizer.eos_token:
stop_parameter = None
@@ -21,29 +21,29 @@ def generate_output(model, tokenizer, params, device, context_len=2048):
else:
raise TypeError("Stop parameter must be string or list of strings.")
- pos = -1
input_ids = tokenizer(prompt).input_ids
output_ids = []
max_src_len = context_len - max_new_tokens - 8
input_ids = input_ids[-max_src_len:]
+ stop_word = None
for i in range(max_new_tokens):
if i == 0:
- out = model(torch.as_tensor([input_ids], device=device), use_cache=True)
+ out = model(
+ torch.as_tensor([input_ids], device=device), use_cache=True)
logits = out.logits
past_key_values = out.past_key_values
else:
- out = model(
- input_ids=torch.as_tensor([[token]], device=device),
- use_cache=True,
- past_key_values=past_key_values,
- )
+ out = model(input_ids=torch.as_tensor([[token]], device=device),
+ use_cache=True,
+ past_key_values=past_key_values)
logits = out.logits
past_key_values = out.past_key_values
last_token_logits = logits[0][-1]
+
if temperature < 1e-4:
token = int(torch.argmax(last_token_logits))
else:
@@ -57,15 +57,22 @@ def generate_output(model, tokenizer, params, device, context_len=2048):
else:
stopped = False
+
output = tokenizer.decode(output_ids, skip_special_tokens=True)
+ # print("Partial output:", output)
for stop_str in stop_strings:
+ # print(f"Looking for '{stop_str}' in '{output[:l_prompt]}'#END")
pos = output.rfind(stop_str)
if pos != -1:
+ # print("Found stop str: ", output)
output = output[:pos]
+ # print("Trimmed output: ", output)
stopped = True
+ stop_word = stop_str
break
else:
pass
+ # print("Not found")
if stopped:
break
@@ -73,7 +80,7 @@ def generate_output(model, tokenizer, params, device, context_len=2048):
del past_key_values
if pos != -1:
return output[:pos]
- return output
+ return output
@torch.inference_mode()
diff --git a/pilot/model/vicuna_llm.py b/pilot/model/vicuna_llm.py
index be433c7c3..26673344f 100644
--- a/pilot/model/vicuna_llm.py
+++ b/pilot/model/vicuna_llm.py
@@ -17,17 +17,25 @@ class VicunaRequestLLM(LLM):
if isinstance(stop, list):
stop = stop + ["Observation:"]
+ skip_echo_len = len(prompt.replace("", " ")) + 1
params = {
"prompt": prompt,
- "temperature": 0,
- "max_new_tokens": 256,
+ "temperature": 0.7,
+ "max_new_tokens": 1024,
"stop": stop
}
response = requests.post(
url=urljoin(vicuna_model_server, self.vicuna_generate_path),
- data=json.dumps(params)
+ data=json.dumps(params),
)
response.raise_for_status()
+ # for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
+ # if chunk:
+ # data = json.loads(chunk.decode())
+ # if data["error_code"] == 0:
+ # output = data["text"][skip_echo_len:].strip()
+ # output = self.post_process_code(output)
+ # yield output
return response.json()["response"]
@property
diff --git a/pilot/server/vicuna_server.py b/pilot/server/vicuna_server.py
index f664410e8..dba68699e 100644
--- a/pilot/server/vicuna_server.py
+++ b/pilot/server/vicuna_server.py
@@ -115,6 +115,5 @@ def embeddings(prompt_request: EmbeddingRequest):
return {"response": [float(x) for x in output]}
-
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", log_level="info")
\ No newline at end of file
diff --git a/pilot/server/webserver.py b/pilot/server/webserver.py
index 19ee4b697..c13a5331f 100644
--- a/pilot/server/webserver.py
+++ b/pilot/server/webserver.py
@@ -10,6 +10,9 @@ import gradio as gr
import datetime
import requests
from urllib.parse import urljoin
+from pilot.configs.model_config import DB_SETTINGS
+from pilot.connections.mysql_conn import MySQLOperator
+
from pilot.configs.model_config import LOGDIR, vicuna_model_server, LLM_MODEL
@@ -29,7 +32,7 @@ from fastchat.utils import (
from fastchat.serve.gradio_patch import Chatbot as grChatbot
from fastchat.serve.gradio_css import code_highlight_css
-logger = build_logger("webserver", "webserver.log")
+logger = build_logger("webserver", LOGDIR + "webserver.log")
headers = {"User-Agent": "dbgpt Client"}
no_change_btn = gr.Button.update()
@@ -38,11 +41,28 @@ disable_btn = gr.Button.update(interactive=True)
enable_moderation = False
models = []
+dbs = []
priority = {
"vicuna-13b": "aaa"
}
+def gen_sqlgen_conversation(dbname):
+ mo = MySQLOperator(
+ **DB_SETTINGS
+ )
+
+ message = ""
+
+ schemas = mo.get_schema(dbname)
+ for s in schemas:
+ message += s["schema_info"] + ";"
+ return f"数据库{dbname}的Schema信息如下: {message}\n"
+
+def get_database_list():
+ mo = MySQLOperator(**DB_SETTINGS)
+ return mo.get_db_list()
+
get_window_url_params = """
function() {
const params = new URLSearchParams(window.location.search);
@@ -58,12 +78,10 @@ function() {
def load_demo(url_params, request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
+ dbs = get_database_list()
dropdown_update = gr.Dropdown.update(visible=True)
- if "model" in url_params:
- model = url_params["model"]
- if model in models:
- dropdown_update = gr.Dropdown.update(
- value=model, visible=True)
+ if dbs:
+ gr.Dropdown.update(choices=dbs)
state = default_conversation.copy()
return (state,
@@ -120,26 +138,32 @@ def post_process_code(code):
code = sep.join(blocks)
return code
-def http_bot(state, temperature, max_new_tokens, request: gr.Request):
+def http_bot(state, db_selector, temperature, max_new_tokens, request: gr.Request):
start_tstamp = time.time()
model_name = LLM_MODEL
+ dbname = db_selector
+ # TODO 这里的请求需要拼接现有知识库, 使得其根据现有知识库作答, 所以prompt需要继续优化
if state.skip_next:
# This generate call is skipped due to invalid inputs
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
if len(state.messages) == state.offset + 2:
- # First round of conversation
+ # 第一轮对话需要加入提示Prompt
template_name = "conv_one_shot"
new_state = conv_templates[template_name].copy()
new_state.conv_id = uuid.uuid4().hex
- new_state.append_message(new_state.roles[0], state.messages[-2][1])
+
+ # prompt 中添加上下文提示
+ new_state.append_message(new_state.roles[0], gen_sqlgen_conversation(dbname) + state.messages[-2][1])
new_state.append_message(new_state.roles[1], None)
state = new_state
-
+
+
prompt = state.get_prompt()
+
skip_echo_len = len(prompt.replace("", " ")) + 1
# Make requests
@@ -226,7 +250,7 @@ def build_single_model_ui():
"""
state = gr.State()
- notice = gr.Markdown(notice_markdown, elem_id="notice_markdown")
+ gr.Markdown(notice_markdown, elem_id="notice_markdown")
with gr.Accordion("参数", open=False, visible=False) as parameter_row:
temperature = gr.Slider(
@@ -247,29 +271,41 @@ def build_single_model_ui():
label="最大输出Token数",
)
- chatbot = grChatbot(elem_id="chatbot", visible=False).style(height=550)
- with gr.Row():
- with gr.Column(scale=20):
- textbox = gr.Textbox(
- show_label=False,
- placeholder="Enter text and press ENTER",
- visible=False,
- ).style(container=False)
+ with gr.Tabs():
+ with gr.TabItem("知识问答", elem_id="QA"):
+ pass
+ with gr.TabItem("SQL生成与诊断", elem_id="SQL"):
+ # TODO A selector to choose database
+ with gr.Row(elem_id="db_selector"):
+ db_selector = gr.Dropdown(
+ label="请选择数据库",
+ choices=dbs,
+ value=dbs[0] if len(models) > 0 else "",
+ interactive=True,
+ show_label=True).style(container=False)
+
+ with gr.Blocks():
+ chatbot = grChatbot(elem_id="chatbot", visible=False).style(height=550)
+ with gr.Row():
+ with gr.Column(scale=20):
+ textbox = gr.Textbox(
+ show_label=False,
+ placeholder="Enter text and press ENTER",
+ visible=False,
+ ).style(container=False)
+ with gr.Column(scale=2, min_width=50):
+ send_btn = gr.Button(value="发送", visible=False)
- with gr.Column(scale=2, min_width=50):
- send_btn = gr.Button(value="" "发送", visible=False)
-
-
with gr.Row(visible=False) as button_row:
- regenerate_btn = gr.Button(value="🔄" "重新生成", interactive=False)
- clear_btn = gr.Button(value="🗑️" "清理", interactive=False)
+ regenerate_btn = gr.Button(value="重新生成", interactive=False)
+ clear_btn = gr.Button(value="清理", interactive=False)
gr.Markdown(learn_more_markdown)
btn_list = [regenerate_btn, clear_btn]
regenerate_btn.click(regenerate, state, [state, chatbot, textbox] + btn_list).then(
http_bot,
- [state, temperature, max_output_tokens],
+ [state, db_selector, temperature, max_output_tokens],
[state, chatbot] + btn_list,
)
clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)
@@ -278,7 +314,7 @@ def build_single_model_ui():
add_text, [state, textbox], [state, chatbot, textbox] + btn_list
).then(
http_bot,
- [state, temperature, max_output_tokens],
+ [state, db_selector, temperature, max_output_tokens],
[state, chatbot] + btn_list,
)
@@ -286,7 +322,7 @@ def build_single_model_ui():
add_text, [state, textbox], [state, chatbot, textbox] + btn_list
).then(
http_bot,
- [state, temperature, max_output_tokens],
+ [state, db_selector, temperature, max_output_tokens],
[state, chatbot] + btn_list
)
@@ -343,6 +379,7 @@ if __name__ == "__main__":
args = parser.parse_args()
logger.info(f"args: {args}")
+ dbs = get_database_list()
logger.info(args)
demo = build_webdemo()
demo.queue(
diff --git a/pilot/vector_store/__init__.py b/pilot/vector_store/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/pilot/vector_store/extract_tovec.py b/pilot/vector_store/extract_tovec.py
new file mode 100644
index 000000000..74e06cf92
--- /dev/null
+++ b/pilot/vector_store/extract_tovec.py
@@ -0,0 +1,23 @@
+#!/usr/bin/env python3
+# -*- coding:utf-8 -*-
+
+
+from langchain.text_splitter import CharacterTextSplitter
+from langchain.vectorstores import Chroma
+from pilot.model.vicuna_llm import VicunaEmbeddingLLM
+
+embeddings = VicunaEmbeddingLLM()
+
+def knownledge_tovec(filename):
+ with open(filename, "r") as f:
+ knownledge = f.read()
+
+ text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
+ texts = text_splitter.split_text(knownledge)
+ docsearch = Chroma.from_texts(
+ texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]
+ )
+ return docsearch
+
+
+