mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-14 14:34:28 +00:00
feat: new knowledge chat scene
1.add new knowledge chat scene 2.format file format
This commit is contained in:
parent
5599bb63ea
commit
fa73a4fae6
@ -4,28 +4,11 @@ from chromadb.errors import NotEnoughElementsException
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
|
||||
from pilot.configs.config import Config
|
||||
from pilot.embedding_engine.csv_embedding import CSVEmbedding
|
||||
from pilot.embedding_engine.knowledge_type import get_knowledge_embedding
|
||||
from pilot.embedding_engine.markdown_embedding import MarkdownEmbedding
|
||||
from pilot.embedding_engine.pdf_embedding import PDFEmbedding
|
||||
from pilot.embedding_engine.ppt_embedding import PPTEmbedding
|
||||
from pilot.embedding_engine.url_embedding import URLEmbedding
|
||||
from pilot.embedding_engine.word_embedding import WordEmbedding
|
||||
from pilot.vector_store.connector import VectorStoreConnector
|
||||
|
||||
CFG = Config()
|
||||
|
||||
# KnowledgeEmbeddingType = {
|
||||
# ".txt": (MarkdownEmbedding, {}),
|
||||
# ".md": (MarkdownEmbedding, {}),
|
||||
# ".pdf": (PDFEmbedding, {}),
|
||||
# ".doc": (WordEmbedding, {}),
|
||||
# ".docx": (WordEmbedding, {}),
|
||||
# ".csv": (CSVEmbedding, {}),
|
||||
# ".ppt": (PPTEmbedding, {}),
|
||||
# ".pptx": (PPTEmbedding, {}),
|
||||
# }
|
||||
|
||||
|
||||
class KnowledgeEmbedding:
|
||||
def __init__(
|
||||
@ -57,23 +40,6 @@ class KnowledgeEmbedding:
|
||||
|
||||
def init_knowledge_embedding(self):
|
||||
return get_knowledge_embedding(self.knowledge_type, self.knowledge_source, self.vector_store_config)
|
||||
# if self.file_type == "url":
|
||||
# embedding = URLEmbedding(
|
||||
# file_path=self.file_path,
|
||||
# vector_store_config=self.vector_store_config,
|
||||
# )
|
||||
# return embedding
|
||||
# extension = "." + self.file_path.rsplit(".", 1)[-1]
|
||||
# if extension in KnowledgeEmbeddingType:
|
||||
# knowledge_class, knowledge_args = KnowledgeEmbeddingType[extension]
|
||||
# embedding = knowledge_class(
|
||||
# self.file_path,
|
||||
# vector_store_config=self.vector_store_config,
|
||||
# **knowledge_args
|
||||
# )
|
||||
# return embedding
|
||||
# raise ValueError(f"Unsupported knowledge file type '{extension}'")
|
||||
# return embedding
|
||||
|
||||
def similar_search(self, text, topk):
|
||||
vector_client = VectorStoreConnector(
|
||||
|
@ -14,6 +14,8 @@ from typing import List
|
||||
|
||||
from pilot.server.api_v1.api_view_model import Result, ConversationVo, MessageVo, ChatSceneVo
|
||||
from pilot.configs.config import Config
|
||||
from pilot.openapi.knowledge.knowledge_service import KnowledgeService
|
||||
from pilot.openapi.knowledge.request.knowledge_request import KnowledgeSpaceRequest
|
||||
from pilot.scene.base_chat import BaseChat
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.scene.chat_factory import ChatFactory
|
||||
@ -27,6 +29,7 @@ router = APIRouter()
|
||||
CFG = Config()
|
||||
CHAT_FACTORY = ChatFactory()
|
||||
logger = build_logger("api_v1", LOGDIR + "api_v1.log")
|
||||
knowledge_service = KnowledgeService()
|
||||
|
||||
|
||||
async def validation_exception_handler(request: Request, exc: RequestValidationError):
|
||||
@ -101,9 +104,8 @@ def plugins_select_info():
|
||||
|
||||
|
||||
def knowledge_list():
|
||||
knowledge: dict = {}
|
||||
### TODO
|
||||
return knowledge
|
||||
request = KnowledgeSpaceRequest()
|
||||
return knowledge_service.get_knowledge_space(request)
|
||||
|
||||
|
||||
@router.post('/v1/chat/mode/params/list', response_model=Result[dict])
|
||||
@ -164,7 +166,7 @@ async def chat_completions(dialogue: ConversationVo = Body()):
|
||||
elif ChatScene.ChatExecution == dialogue.chat_mode:
|
||||
chat_param.update("plugin_selector", dialogue.select_param)
|
||||
elif ChatScene.ChatKnowledge == dialogue.chat_mode:
|
||||
chat_param.update("knowledge_name", dialogue.select_param)
|
||||
chat_param.update("knowledge_space", dialogue.select_param)
|
||||
|
||||
chat: BaseChat = CHAT_FACTORY.get_implementation(dialogue.chat_mode, **chat_param)
|
||||
if not chat.prompt_template.stream_out:
|
||||
|
0
pilot/scene/chat_knowledge/v1/__init__.py
Normal file
0
pilot/scene/chat_knowledge/v1/__init__.py
Normal file
66
pilot/scene/chat_knowledge/v1/chat.py
Normal file
66
pilot/scene/chat_knowledge/v1/chat.py
Normal file
@ -0,0 +1,66 @@
|
||||
from chromadb.errors import NoIndexException
|
||||
|
||||
from pilot.scene.base_chat import BaseChat, logger, headers
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.common.sql_database import Database
|
||||
from pilot.configs.config import Config
|
||||
|
||||
from pilot.common.markdown_text import (
|
||||
generate_markdown_table,
|
||||
generate_htm_table,
|
||||
datas_to_table_html,
|
||||
)
|
||||
|
||||
from pilot.configs.model_config import (
|
||||
DATASETS_DIR,
|
||||
KNOWLEDGE_UPLOAD_ROOT_PATH,
|
||||
LLM_MODEL_CONFIG,
|
||||
LOGDIR,
|
||||
)
|
||||
|
||||
from pilot.scene.chat_knowledge.default.prompt import prompt
|
||||
from pilot.embedding_engine.knowledge_embedding import KnowledgeEmbedding
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
class ChatKnowledge(BaseChat):
|
||||
chat_scene: str = ChatScene.ChatKnowledge.value
|
||||
|
||||
"""Number of results to return from the query"""
|
||||
|
||||
def __init__(self, chat_session_id, user_input, knowledge_space):
|
||||
""" """
|
||||
super().__init__(
|
||||
chat_mode=ChatScene.ChatKnowledge,
|
||||
chat_session_id=chat_session_id,
|
||||
current_user_input=user_input,
|
||||
)
|
||||
vector_store_config = {
|
||||
"vector_store_name": knowledge_space,
|
||||
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
|
||||
}
|
||||
self.knowledge_embedding_client = KnowledgeEmbedding(
|
||||
model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL],
|
||||
vector_store_config=vector_store_config,
|
||||
)
|
||||
|
||||
def generate_input_values(self):
|
||||
try:
|
||||
docs = self.knowledge_embedding_client.similar_search(
|
||||
self.current_user_input, CFG.KNOWLEDGE_SEARCH_TOP_SIZE
|
||||
)
|
||||
context = [d.page_content for d in docs]
|
||||
context = context[:2000]
|
||||
input_values = {"context": context, "question": self.current_user_input}
|
||||
except NoIndexException:
|
||||
raise ValueError(
|
||||
"you have no knowledge space, please add your knowledge space"
|
||||
)
|
||||
return input_values
|
||||
|
||||
|
||||
|
||||
@property
|
||||
def chat_type(self) -> str:
|
||||
return ChatScene.ChatKnowledge.value
|
19
pilot/scene/chat_knowledge/v1/out_parser.py
Normal file
19
pilot/scene/chat_knowledge/v1/out_parser.py
Normal file
@ -0,0 +1,19 @@
|
||||
import json
|
||||
import re
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, NamedTuple
|
||||
import pandas as pd
|
||||
from pilot.utils import build_logger
|
||||
from pilot.out_parser.base import BaseOutputParser, T
|
||||
from pilot.configs.model_config import LOGDIR
|
||||
|
||||
|
||||
logger = build_logger("webserver", LOGDIR + "DbChatOutputParser.log")
|
||||
|
||||
|
||||
class NormalChatOutputParser(BaseOutputParser):
|
||||
def parse_prompt_response(self, model_out_text) -> T:
|
||||
return model_out_text
|
||||
|
||||
def get_format_instructions(self) -> str:
|
||||
pass
|
54
pilot/scene/chat_knowledge/v1/prompt.py
Normal file
54
pilot/scene/chat_knowledge/v1/prompt.py
Normal file
@ -0,0 +1,54 @@
|
||||
import builtins
|
||||
import importlib
|
||||
|
||||
from pilot.prompts.prompt_new import PromptTemplate
|
||||
from pilot.configs.config import Config
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.common.schema import SeparatorStyle
|
||||
|
||||
from pilot.scene.chat_normal.out_parser import NormalChatOutputParser
|
||||
|
||||
|
||||
CFG = Config()
|
||||
|
||||
PROMPT_SCENE_DEFINE = """A chat between a curious user and an artificial intelligence assistant, who very familiar with database related knowledge.
|
||||
The assistant gives helpful, detailed, professional and polite answers to the user's questions. """
|
||||
|
||||
|
||||
_DEFAULT_TEMPLATE_ZH = """ 基于以下已知的信息, 专业、简要的回答用户的问题,
|
||||
如果无法从提供的内容中获取答案, 请说: "知识库中提供的内容不足以回答此问题" 禁止胡乱编造。
|
||||
已知内容:
|
||||
{context}
|
||||
问题:
|
||||
{question}
|
||||
"""
|
||||
_DEFAULT_TEMPLATE_EN = """ Based on the known information below, provide users with professional and concise answers to their questions. If the answer cannot be obtained from the provided content, please say: "The information provided in the knowledge base is not sufficient to answer this question." It is forbidden to make up information randomly.
|
||||
known information:
|
||||
{context}
|
||||
question:
|
||||
{question}
|
||||
"""
|
||||
|
||||
_DEFAULT_TEMPLATE = (
|
||||
_DEFAULT_TEMPLATE_EN if CFG.LANGUAGE == "en" else _DEFAULT_TEMPLATE_ZH
|
||||
)
|
||||
|
||||
|
||||
PROMPT_SEP = SeparatorStyle.SINGLE.value
|
||||
|
||||
PROMPT_NEED_NEED_STREAM_OUT = True
|
||||
|
||||
prompt = PromptTemplate(
|
||||
template_scene=ChatScene.ChatKnowledge.value,
|
||||
input_variables=["context", "question"],
|
||||
response_format=None,
|
||||
template_define=PROMPT_SCENE_DEFINE,
|
||||
template=_DEFAULT_TEMPLATE,
|
||||
stream_out=PROMPT_NEED_NEED_STREAM_OUT,
|
||||
output_parser=NormalChatOutputParser(
|
||||
sep=PROMPT_SEP, is_stream_out=PROMPT_NEED_NEED_STREAM_OUT
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
CFG.prompt_templates.update({prompt.template_scene: prompt})
|
@ -11,6 +11,8 @@ import uuid
|
||||
|
||||
import gradio as gr
|
||||
|
||||
from pilot.embedding_engine.knowledge_type import KnowledgeType
|
||||
|
||||
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(ROOT_PATH)
|
||||
|
||||
@ -664,7 +666,8 @@ def knowledge_embedding_store(vs_id, files):
|
||||
file.name, os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vs_id, filename)
|
||||
)
|
||||
knowledge_embedding_client = KnowledgeEmbedding(
|
||||
file_path=os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vs_id, filename),
|
||||
knowledge_source=os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, vs_id, filename),
|
||||
knowledge_type=KnowledgeType.DOCUMENT.value,
|
||||
model_name=LLM_MODEL_CONFIG["text2vec"],
|
||||
vector_store_config={
|
||||
"vector_store_name": vector_store_name["vs_name"],
|
||||
|
Loading…
Reference in New Issue
Block a user