feat(core): APP use new SDK component (#1050)

This commit is contained in:
Fangyin Cheng
2024-01-10 10:39:04 +08:00
committed by GitHub
parent e11b72c724
commit fa8b5b190c
242 changed files with 2768 additions and 2163 deletions

View File

@@ -1,21 +1,15 @@
from __future__ import annotations
from typing import (
List,
Type,
Optional,
)
import logging
import threading
import os
import threading
from functools import cache
from typing import List, Optional, Type
from dbgpt.model.adapter.base import LLMModelAdapter, get_model_adapter
from dbgpt.model.adapter.template import ConversationAdapter, ConversationAdapterFactory
from dbgpt.model.base import ModelType
from dbgpt.model.parameter import BaseModelParameters
from dbgpt.model.adapter.base import LLMModelAdapter, get_model_adapter
from dbgpt.model.adapter.template import (
ConversationAdapter,
ConversationAdapterFactory,
)
logger = logging.getLogger(__name__)
@@ -64,9 +58,9 @@ def get_llm_model_adapter(
if use_fastchat and not must_use_old:
logger.info("Use fastcat adapter")
from dbgpt.model.adapter.fschat_adapter import (
_get_fastchat_model_adapter,
_fastchat_get_adapter_monkey_patch,
FastChatLLMModelAdapterWrapper,
_fastchat_get_adapter_monkey_patch,
_get_fastchat_model_adapter,
)
adapter = _get_fastchat_model_adapter(
@@ -79,11 +73,11 @@ def get_llm_model_adapter(
result_adapter = FastChatLLMModelAdapterWrapper(adapter)
else:
from dbgpt.app.chat_adapter import get_llm_chat_adapter
from dbgpt.model.adapter.old_adapter import OldLLMModelAdapterWrapper
from dbgpt.model.adapter.old_adapter import (
get_llm_model_adapter as _old_get_llm_model_adapter,
OldLLMModelAdapterWrapper,
)
from dbgpt.app.chat_adapter import get_llm_chat_adapter
logger.info("Use DB-GPT old adapter")
result_adapter = OldLLMModelAdapterWrapper(
@@ -139,12 +133,12 @@ def _dynamic_model_parser() -> Optional[List[Type[BaseModelParameters]]]:
Returns:
Optional[List[Type[BaseModelParameters]]]: The model parameters class list.
"""
from dbgpt.util.parameter_utils import _SimpleArgParser
from dbgpt.model.parameter import (
EMBEDDING_NAME_TO_PARAMETER_CLASS_CONFIG,
EmbeddingModelParameters,
WorkerType,
EMBEDDING_NAME_TO_PARAMETER_CLASS_CONFIG,
)
from dbgpt.util.parameter_utils import _SimpleArgParser
pre_args = _SimpleArgParser("model_name", "model_path", "worker_type", "model_type")
pre_args.parse()