mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-08 20:39:44 +00:00
refactor: rag storage refactor (#2434)
This commit is contained in:
@@ -5,7 +5,7 @@ from dbgpt.configs.model_config import ROOT_PATH
|
||||
from dbgpt_ext.rag import ChunkParameters
|
||||
from dbgpt_ext.rag.assembler.bm25 import BM25Assembler
|
||||
from dbgpt_ext.rag.knowledge import KnowledgeFactory
|
||||
from dbgpt_ext.storage.vector_store.elastic_store import ElasticsearchVectorConfig
|
||||
from dbgpt_ext.storage.vector_store.elastic_store import ElasticsearchStoreConfig
|
||||
|
||||
"""Embedding rag example.
|
||||
pre-requirements:
|
||||
@@ -19,8 +19,7 @@ from dbgpt_ext.storage.vector_store.elastic_store import ElasticsearchVectorConf
|
||||
|
||||
def _create_es_config():
|
||||
"""Create vector connector."""
|
||||
return ElasticsearchVectorConfig(
|
||||
name="bm25_es_dbgpt",
|
||||
return ElasticsearchStoreConfig(
|
||||
uri="localhost",
|
||||
port="9200",
|
||||
user="elastic",
|
||||
|
@@ -25,14 +25,16 @@ def _create_vector_connector():
|
||||
"""Create vector connector."""
|
||||
config = ChromaVectorConfig(
|
||||
persist_path=PILOT_PATH,
|
||||
)
|
||||
|
||||
return ChromaStore(
|
||||
config,
|
||||
name="embedding_rag_test",
|
||||
embedding_fn=DefaultEmbeddingFactory(
|
||||
default_model_name=os.path.join(MODEL_PATH, "text2vec-large-chinese"),
|
||||
).create(),
|
||||
)
|
||||
|
||||
return ChromaStore(config)
|
||||
|
||||
|
||||
async def main():
|
||||
file_path = os.path.join(ROOT_PATH, "docs/docs/awel/awel.md")
|
||||
|
@@ -4,8 +4,7 @@ from dbgpt.configs.model_config import MODEL_PATH, PILOT_PATH
|
||||
from dbgpt.rag.embedding import DefaultEmbeddingFactory
|
||||
from dbgpt_ext.datasource.rdbms.conn_sqlite import SQLiteTempConnector
|
||||
from dbgpt_ext.rag.assembler import DBSchemaAssembler
|
||||
from dbgpt_ext.storage.vector_store.chroma_store import ChromaVectorConfig
|
||||
from dbgpt_serve.rag.connector import VectorStoreConnector
|
||||
from dbgpt_ext.storage.vector_store.chroma_store import ChromaStore, ChromaVectorConfig
|
||||
|
||||
"""DB struct rag example.
|
||||
pre-requirements:
|
||||
@@ -46,12 +45,12 @@ def _create_temporary_connection():
|
||||
|
||||
def _create_vector_connector():
|
||||
"""Create vector connector."""
|
||||
return VectorStoreConnector.from_default(
|
||||
"Chroma",
|
||||
vector_store_config=ChromaVectorConfig(
|
||||
name="db_schema_vector_store_name",
|
||||
persist_path=os.path.join(PILOT_PATH, "data"),
|
||||
),
|
||||
config = ChromaVectorConfig(
|
||||
persist_path=PILOT_PATH,
|
||||
)
|
||||
return ChromaStore(
|
||||
config,
|
||||
name="embedding_rag_test",
|
||||
embedding_fn=DefaultEmbeddingFactory(
|
||||
default_model_name=os.path.join(MODEL_PATH, "text2vec-large-chinese"),
|
||||
).create(),
|
||||
|
@@ -25,14 +25,16 @@ def _create_vector_connector():
|
||||
"""Create vector connector."""
|
||||
config = ChromaVectorConfig(
|
||||
persist_path=PILOT_PATH,
|
||||
)
|
||||
|
||||
return ChromaStore(
|
||||
config,
|
||||
name="embedding_rag_test",
|
||||
embedding_fn=DefaultEmbeddingFactory(
|
||||
default_model_name=os.path.join(MODEL_PATH, "text2vec-large-chinese"),
|
||||
).create(),
|
||||
)
|
||||
|
||||
return ChromaStore(config)
|
||||
|
||||
|
||||
async def main():
|
||||
file_path = os.path.join(ROOT_PATH, "docs/docs/awel/awel.md")
|
||||
|
@@ -10,13 +10,12 @@ from dbgpt.rag.retriever import RetrieverStrategy
|
||||
from dbgpt_ext.rag import ChunkParameters
|
||||
from dbgpt_ext.rag.assembler import EmbeddingAssembler
|
||||
from dbgpt_ext.rag.knowledge import KnowledgeFactory
|
||||
from dbgpt_ext.storage.graph_store.tugraph_store import TuGraphStoreConfig
|
||||
from dbgpt_ext.storage.knowledge_graph.community_summary import (
|
||||
CommunitySummaryKnowledgeGraph,
|
||||
CommunitySummaryKnowledgeGraphConfig,
|
||||
)
|
||||
from dbgpt_ext.storage.knowledge_graph.knowledge_graph import (
|
||||
BuiltinKnowledgeGraph,
|
||||
BuiltinKnowledgeGraphConfig,
|
||||
)
|
||||
|
||||
"""GraphRAG example.
|
||||
@@ -61,26 +60,22 @@ async def test_community_graph_rag():
|
||||
def __create_naive_kg_connector():
|
||||
"""Create knowledge graph connector."""
|
||||
return BuiltinKnowledgeGraph(
|
||||
config=BuiltinKnowledgeGraphConfig(
|
||||
name="naive_graph_rag_test",
|
||||
embedding_fn=None,
|
||||
llm_client=llm_client,
|
||||
model_name=model_name,
|
||||
graph_store_type="MemoryGraph",
|
||||
),
|
||||
config=TuGraphStoreConfig(),
|
||||
name="naive_graph_rag_test",
|
||||
embedding_fn=None,
|
||||
llm_client=llm_client,
|
||||
llm_model=model_name,
|
||||
)
|
||||
|
||||
|
||||
def __create_community_kg_connector():
|
||||
"""Create community knowledge graph connector."""
|
||||
return CommunitySummaryKnowledgeGraph(
|
||||
config=CommunitySummaryKnowledgeGraphConfig(
|
||||
name="community_graph_rag_test",
|
||||
embedding_fn=DefaultEmbeddingFactory.openai(),
|
||||
llm_client=llm_client,
|
||||
model_name=model_name,
|
||||
graph_store_type="TuGraphGraph",
|
||||
),
|
||||
config=TuGraphStoreConfig(),
|
||||
name="community_graph_rag_test",
|
||||
embedding_fn=DefaultEmbeddingFactory.openai(),
|
||||
llm_client=llm_client,
|
||||
llm_model=model_name,
|
||||
)
|
||||
|
||||
|
||||
|
@@ -6,8 +6,8 @@ from dbgpt_ext.rag import ChunkParameters
|
||||
from dbgpt_ext.rag.assembler import EmbeddingAssembler
|
||||
from dbgpt_ext.rag.knowledge import KnowledgeFactory
|
||||
from dbgpt_ext.storage.full_text.elasticsearch import (
|
||||
ElasticDocumentConfig,
|
||||
ElasticDocumentStore,
|
||||
ElasticsearchStoreConfig,
|
||||
)
|
||||
|
||||
"""Keyword rag example.
|
||||
@@ -22,15 +22,14 @@ from dbgpt_ext.storage.full_text.elasticsearch import (
|
||||
|
||||
def _create_es_connector():
|
||||
"""Create es connector."""
|
||||
config = ElasticDocumentConfig(
|
||||
name="keyword_rag_test",
|
||||
config = ElasticsearchStoreConfig(
|
||||
uri="localhost",
|
||||
port="9200",
|
||||
user="elastic",
|
||||
password="dbgpt",
|
||||
)
|
||||
|
||||
return ElasticDocumentStore(config)
|
||||
return ElasticDocumentStore(config, name="keyword_rag_test")
|
||||
|
||||
|
||||
async def main():
|
||||
|
@@ -23,14 +23,16 @@ def _create_vector_connector():
|
||||
"""Create vector connector."""
|
||||
config = ChromaVectorConfig(
|
||||
persist_path=PILOT_PATH,
|
||||
name="metadata_rag_test",
|
||||
)
|
||||
|
||||
return ChromaStore(
|
||||
config,
|
||||
name="embedding_rag_test",
|
||||
embedding_fn=DefaultEmbeddingFactory(
|
||||
default_model_name=os.path.join(MODEL_PATH, "text2vec-large-chinese"),
|
||||
).create(),
|
||||
)
|
||||
|
||||
return ChromaStore(config)
|
||||
|
||||
|
||||
async def main():
|
||||
file_path = os.path.join(ROOT_PATH, "docs/docs/awel/awel.md")
|
||||
|
@@ -56,11 +56,13 @@ def _create_vector_connector():
|
||||
"""Create vector connector."""
|
||||
config = ChromaVectorConfig(
|
||||
persist_path=PILOT_PATH,
|
||||
name="embedding_api_rag_test",
|
||||
embedding_fn=_create_embeddings(),
|
||||
)
|
||||
|
||||
return ChromaStore(config)
|
||||
return ChromaStore(
|
||||
config,
|
||||
name="embedding_rag_test",
|
||||
embedding_fn=_create_embeddings(),
|
||||
)
|
||||
|
||||
|
||||
async def main():
|
||||
|
@@ -27,15 +27,17 @@ def _create_embeddings(
|
||||
).create()
|
||||
|
||||
|
||||
def _create_vector_connector(embeddings: Embeddings):
|
||||
def _create_vector_connector():
|
||||
"""Create vector connector."""
|
||||
config = ChromaVectorConfig(
|
||||
persist_path=PILOT_PATH,
|
||||
name="embedding_rag_test",
|
||||
embedding_fn=embeddings,
|
||||
)
|
||||
|
||||
return ChromaStore(config)
|
||||
return ChromaStore(
|
||||
config,
|
||||
name="embedding_rag_test",
|
||||
embedding_fn=_create_embeddings(),
|
||||
)
|
||||
|
||||
|
||||
async def main():
|
||||
|
@@ -39,15 +39,17 @@ from dbgpt_ext.storage.vector_store.chroma_store import ChromaStore, ChromaVecto
|
||||
def _create_vector_connector():
|
||||
"""Create vector connector."""
|
||||
config = ChromaVectorConfig(
|
||||
persist_path=os.path.join(PILOT_PATH, "data"),
|
||||
name="vector_name",
|
||||
persist_path=PILOT_PATH,
|
||||
)
|
||||
|
||||
return ChromaStore(
|
||||
config,
|
||||
name="embedding_rag_test",
|
||||
embedding_fn=DefaultEmbeddingFactory(
|
||||
default_model_name=os.path.join(MODEL_PATH, "text2vec-large-chinese"),
|
||||
).create(),
|
||||
)
|
||||
|
||||
return ChromaStore(config)
|
||||
|
||||
|
||||
def _create_temporary_connection():
|
||||
"""Create a temporary database connection for testing."""
|
||||
|
@@ -27,14 +27,16 @@ def _create_vector_connector():
|
||||
"""Create vector connector."""
|
||||
config = ChromaVectorConfig(
|
||||
persist_path=PILOT_PATH,
|
||||
)
|
||||
|
||||
return ChromaStore(
|
||||
config,
|
||||
name="embedding_rag_test",
|
||||
embedding_fn=DefaultEmbeddingFactory(
|
||||
default_model_name=os.path.join(MODEL_PATH, "text2vec-large-chinese"),
|
||||
).create(),
|
||||
)
|
||||
|
||||
return ChromaStore(config)
|
||||
|
||||
|
||||
class TriggerReqBody(BaseModel):
|
||||
url: str = Field(..., description="url")
|
||||
|
@@ -76,14 +76,16 @@ def _create_vector_connector():
|
||||
"""Create vector connector."""
|
||||
config = ChromaVectorConfig(
|
||||
persist_path=PILOT_PATH,
|
||||
)
|
||||
|
||||
return ChromaStore(
|
||||
config,
|
||||
name="embedding_rag_test",
|
||||
embedding_fn=DefaultEmbeddingFactory(
|
||||
default_model_name=os.path.join(MODEL_PATH, "text2vec-large-chinese"),
|
||||
).create(),
|
||||
)
|
||||
|
||||
return ChromaStore(config)
|
||||
|
||||
|
||||
with DAG("simple_sdk_rag_retriever_example") as dag:
|
||||
vector_store = _create_vector_connector()
|
||||
|
Reference in New Issue
Block a user