feat:embedding_engine add text_splitter param

This commit is contained in:
aries_ckt
2023-07-12 18:01:22 +08:00
parent f911a8fa97
commit ff89e2e085
6 changed files with 53 additions and 51 deletions

View File

@@ -2,6 +2,7 @@ from typing import Optional
from chromadb.errors import NotEnoughElementsException
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import TextSplitter
from pilot.embedding_engine.knowledge_type import get_knowledge_embedding, KnowledgeType
from pilot.vector_store.connector import VectorStoreConnector
@@ -21,6 +22,7 @@ class EmbeddingEngine:
vector_store_config,
knowledge_type: Optional[str] = KnowledgeType.DOCUMENT.value,
knowledge_source: Optional[str] = None,
text_splitter: Optional[TextSplitter] = None,
):
"""Initialize with knowledge embedding client, model_name, vector_store_config, knowledge_type, knowledge_source"""
self.knowledge_source = knowledge_source
@@ -29,6 +31,7 @@ class EmbeddingEngine:
self.knowledge_type = knowledge_type
self.embeddings = HuggingFaceEmbeddings(model_name=self.model_name)
self.vector_store_config["embeddings"] = self.embeddings
self.text_splitter = text_splitter
def knowledge_embedding(self):
"""source embedding is chain process.read->text_split->data_process->index_store"""
@@ -47,7 +50,10 @@ class EmbeddingEngine:
def init_knowledge_embedding(self):
return get_knowledge_embedding(
self.knowledge_type, self.knowledge_source, self.vector_store_config
self.knowledge_type,
self.knowledge_source,
self.vector_store_config,
self.text_splitter,
)
def similar_search(self, text, topk):

View File

@@ -40,7 +40,9 @@ class KnowledgeType(Enum):
YOUTUBE = "YOUTUBE"
def get_knowledge_embedding(knowledge_type, knowledge_source, vector_store_config):
def get_knowledge_embedding(
knowledge_type, knowledge_source, vector_store_config, text_splitter
):
match knowledge_type:
case KnowledgeType.DOCUMENT.value:
extension = "." + knowledge_source.rsplit(".", 1)[-1]
@@ -49,6 +51,7 @@ def get_knowledge_embedding(knowledge_type, knowledge_source, vector_store_confi
embedding = knowledge_class(
knowledge_source,
vector_store_config=vector_store_config,
text_splitter=text_splitter,
**knowledge_args,
)
return embedding
@@ -57,12 +60,14 @@ def get_knowledge_embedding(knowledge_type, knowledge_source, vector_store_confi
embedding = URLEmbedding(
file_path=knowledge_source,
vector_store_config=vector_store_config,
text_splitter=text_splitter,
)
return embedding
case KnowledgeType.TEXT.value:
embedding = StringEmbedding(
file_path=knowledge_source,
vector_store_config=vector_store_config,
text_splitter=text_splitter,
)
return embedding
case KnowledgeType.OSS.value:

View File

@@ -1,6 +1,8 @@
import threading
from datetime import datetime
from langchain.text_splitter import RecursiveCharacterTextSplitter, SpacyTextSplitter
from pilot.configs.config import Config
from pilot.configs.model_config import LLM_MODEL_CONFIG, KNOWLEDGE_UPLOAD_ROOT_PATH
from pilot.embedding_engine.embedding_engine import EmbeddingEngine
@@ -122,6 +124,24 @@ class KnowledgeService:
raise Exception(
f" doc:{doc.doc_name} status is {doc.status}, can not sync"
)
if CFG.LANGUAGE == "en":
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=20,
length_function=len,
)
else:
try:
text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=100,
)
except Exception:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, chunk_overlap=50
)
client = EmbeddingEngine(
knowledge_source=doc.content,
knowledge_type=doc.doc_type.upper(),
@@ -131,6 +151,7 @@ class KnowledgeService:
"vector_store_type": CFG.VECTOR_STORE_TYPE,
"chroma_persist_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
},
text_splitter=text_splitter,
)
chunk_docs = client.read()
# update document status