{ "cells": [ { "cell_type": "code", "metadata": { "ExecuteTime": { "end_time": "2024-04-10T04:38:14.228948Z", "start_time": "2024-04-10T04:38:14.224972Z" } }, "source": [ "import nest_asyncio\n", "from dbgpt.agent import (\n", " AgentContext,\n", " GptsMemory,\n", " LLMConfig,\n", " ResourceLoader,\n", " UserProxyAgent,\n", ")\n", "from dbgpt.agent.expand.code_assistant_agent import CodeAssistantAgent\n", "from dbgpt.agent.plan import AutoPlanChatManager\n", "from dbgpt.model.proxy import OpenAILLMClient\n", "\n", "nest_asyncio.apply()" ], "execution_count": 7, "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "is_executing": true }, "source": [ "# Set your api key and api base url\n", "# os.environ[\"OPENAI_API_KEY\"] = \"Your API\"\n", "# os.environ[\"OPENAI_API_BASE\"] = \"https://api.openai.com/v1\"" ], "outputs": [] }, { "cell_type": "code", "metadata": { "ExecuteTime": { "end_time": "2024-04-10T04:19:47.838081Z", "start_time": "2024-04-10T04:17:54.465616Z" } }, "source": [ "llm_client = OpenAILLMClient(model_alias=\"gpt-4\")\n", "context: AgentContext = AgentContext(conv_id=\"test456\", gpts_app_name=\"代码分析助手\")\n", "\n", "default_memory = GptsMemory()\n", "\n", "resource_loader = ResourceLoader()\n", "\n", "coder = (\n", " await CodeAssistantAgent()\n", " .bind(context)\n", " .bind(LLMConfig(llm_client=llm_client))\n", " .bind(default_memory)\n", " .bind(resource_loader)\n", " .build()\n", ")\n", "\n", "manager = (\n", " await AutoPlanChatManager()\n", " .bind(context)\n", " .bind(default_memory)\n", " .bind(LLMConfig(llm_client=llm_client))\n", " .build()\n", ")\n", "manager.hire([coder])\n", "\n", "user_proxy = await UserProxyAgent().bind(context).bind(default_memory).build()\n", "\n", "\n", "await user_proxy.initiate_chat(\n", " recipient=manager,\n", " reviewer=user_proxy,\n", " message=\"Obtain simple information about issues in the repository 'eosphoros-ai/DB-GPT' in the past three days and analyze the data. Create a Markdown table grouped by day and status.\",\n", " # message=\"Find papers on gpt-4 in the past three weeks on arxiv, and organize their titles, authors, and links into a markdown table\",\n", " # message=\"find papers on LLM applications from arxiv in the last month, create a markdown table of different domains.\",\n", ")" ], "execution_count": 4, "outputs": [] } ], "metadata": { "kernelspec": { "display_name": "dbgpt_env", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.13" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "f8b6b0e04f284afd2fbb5e4163e7d03bbdc845eaeb6e8c78fae04fce6b51dae6" } } }, "nbformat": 4, "nbformat_minor": 2 }