from threading import Thread import torch from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer def falcon_generate_output(model, tokenizer, params, device, context_len=2048): """Fork from: https://github.com/KohakuBlueleaf/guanaco-lora/blob/main/generate.py""" tokenizer.bos_token_id = 1 print(params) stop = params.get("stop", "###") prompt = params["prompt"] query = prompt print("Query Message: ", query) input_ids = tokenizer(query, return_tensors="pt").input_ids input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer( tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True ) tokenizer.bos_token_id = 1 stop_token_ids = [0] class StopOnTokens(StoppingCriteria): def __call__( self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs ) -> bool: for stop_id in stop_token_ids: if input_ids[0][-1] == stop_id: return True return False stop = StopOnTokens() generate_kwargs = dict( input_ids=input_ids, max_new_tokens=512, temperature=1.0, do_sample=True, top_k=1, streamer=streamer, repetition_penalty=1.7, stopping_criteria=StoppingCriteriaList([stop]), ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() out = "" for new_text in streamer: out += new_text yield out