import logging from threading import Thread import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer logger = logging.getLogger(__name__) @torch.inference_mode() def huggingface_chat_generate_stream( model: AutoModelForCausalLM, tokenizer: AutoTokenizer, params, device, context_len=4096, ): prompt = params["prompt"] temperature = float(params.get("temperature", 0.7)) top_p = float(params.get("top_p", 1.0)) echo = params.get("echo", False) max_new_tokens = int(params.get("max_new_tokens", 2048)) stop_token_ids = params.get("stop_token_ids", []) do_sample = params.get("do_sample", True) custom_stop_words = params.get("custom_stop_words", []) input_ids = tokenizer(prompt).input_ids # input_ids = input_ids.to(device) if model.config.is_encoder_decoder: max_src_len = context_len else: # truncate max_src_len = context_len - max_new_tokens - 1 input_ids = input_ids[-max_src_len:] input_echo_len = len(input_ids) input_ids = torch.as_tensor([input_ids], device=device) streamer = TextIteratorStreamer( tokenizer, skip_prompt=not echo, skip_special_tokens=True ) base_kwargs = { "max_length": context_len, "temperature": temperature, "streamer": streamer, "top_p": top_p, } if stop_token_ids: base_kwargs["eos_token_id"] = stop_token_ids if do_sample is not None: base_kwargs["do_sample"] = do_sample logger.info( f"Predict with parameters: {base_kwargs}\ncustom_stop_words: {custom_stop_words}" ) generate_kwargs = {"input_ids": input_ids, **base_kwargs} thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() out = "" for new_text in streamer: out += new_text if custom_stop_words: for stop_word in custom_stop_words: if out.endswith(stop_word): out = out[: -len(stop_word)] yield out