# Define your Pydantic schemas here from typing import Any, Dict, Optional from dbgpt._private.pydantic import BaseModel, ConfigDict, Field, model_to_dict from ..config import SERVE_APP_NAME_HUMP class ServeRequest(BaseModel): """DbgptsMy request model""" id: Optional[int] = Field(None, description="id") user_name: Optional[str] = Field(None, description="My gpts user name") sys_code: Optional[str] = Field(None, description="My gpts sys code") name: Optional[str] = Field(None, description="My gpts name") file_name: Optional[str] = Field(None, description="My gpts file name") type: Optional[str] = Field(None, description="My gpts type") version: Optional[str] = Field(None, description="My gpts version") use_count: Optional[int] = Field(None, description="My gpts use count") succ_count: Optional[int] = Field(None, description="My gpts succ count") model_config = ConfigDict(title=f"ServeRequest for {SERVE_APP_NAME_HUMP}") def to_dict(self, **kwargs) -> Dict[str, Any]: """Convert the model to a dictionary""" return model_to_dict(self, **kwargs) class ServerResponse(ServeRequest): gmt_created: Optional[str] = Field(None, description="Dbgpts create time") gmt_modified: Optional[str] = Field(None, description="Dbgpts upload time")