from dbgpt import EmbeddingEngine, KnowledgeType embedding_model = "your_embedding_model" vector_store_type = "Chroma" chroma_persist_path = "your_persist_path" vector_store_config = { "vector_store_name": "document_test", "vector_store_type": vector_store_type, "chroma_persist_path": chroma_persist_path, } # it can be .md,.pdf,.docx, .csv, .html document_path = "your_path/test.md" embedding_engine = EmbeddingEngine( knowledge_source=document_path, knowledge_type=KnowledgeType.DOCUMENT.value, model_name=embedding_model, vector_store_config=vector_store_config, ) # embedding document content to vector store embedding_engine.knowledge_embedding()