from typing import List from langchain.text_splitter import CharacterTextSplitter from pilot.source_embedding import SourceEmbedding, register from bs4 import BeautifulSoup from langchain.document_loaders import WebBaseLoader from langchain.schema import Document class URLEmbedding(SourceEmbedding): """url embedding for read url document.""" def __init__(self, file_path, model_name, vector_store_config): """Initialize with url path.""" self.file_path = file_path self.model_name = model_name self.vector_store_config = vector_store_config @register def read(self): """Load from url path.""" loader = WebBaseLoader(web_path=self.file_path) text_splitor = CharacterTextSplitter(chunk_size=1000, chunk_overlap=20, length_function=len) return loader.load_and_split(text_splitor) @register def data_process(self, documents: List[Document]): i = 0 for d in documents: content = d.page_content.replace("\n", "") soup = BeautifulSoup(content, 'html.parser') for tag in soup(['!doctype', 'meta']): tag.extract() documents[i].page_content = soup.get_text() i += 1 return documents