String ================================== string embedding can import a long raw text into a vector knowledge base. The entire embedding process includes the read (loading data), data_process (data processing), and index_to_store (embedding to the vector database) methods. inheriting the SourceEmbedding ``` class StringEmbedding(SourceEmbedding): """string embedding for read string document.""" def __init__( self, file_path, vector_store_config, text_splitter: Optional[TextSplitter] = None, ): """Initialize raw text word path.""" super().__init__(file_path=file_path, vector_store_config=vector_store_config) self.file_path = file_path self.vector_store_config = vector_store_config self.text_splitter = text_splitter or None ``` implement read() and data_process() read() method allows you to read data and split data into chunk ``` @register def read(self): """Load from String path.""" metadata = {"source": "raw text"} return [Document(page_content=self.file_path, metadata=metadata)] ``` data_process() method allows you to pre processing your ways ``` @register def data_process(self, documents: List[Document]): i = 0 for d in documents: documents[i].page_content = d.page_content.replace("\n", "") i += 1 return documents ```