#!/usr/bin/env python3 # -*- coding: utf-8 -*- from typing import List from langchain.document_loaders import PyPDFLoader from langchain.schema import Document from langchain.text_splitter import SpacyTextSplitter, CharacterTextSplitter from pilot.configs.config import Config from pilot.embedding_engine import SourceEmbedding, register CFG = Config() class PDFEmbedding(SourceEmbedding): """pdf embedding for read pdf document.""" def __init__(self, file_path, vector_store_config): """Initialize with pdf path.""" super().__init__(file_path, vector_store_config) self.file_path = file_path self.vector_store_config = vector_store_config @register def read(self): """Load from pdf path.""" loader = PyPDFLoader(self.file_path) # textsplitter = CHNDocumentSplitter( # pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE # ) # textsplitter = SpacyTextSplitter( # pipeline="zh_core_web_sm", # chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, # chunk_overlap=100, # ) if CFG.LANGUAGE == "en": text_splitter = CharacterTextSplitter( chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, chunk_overlap=20, length_function=len, ) else: text_splitter = SpacyTextSplitter( pipeline="zh_core_web_sm", chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, chunk_overlap=100, ) return loader.load_and_split(text_splitter) @register def data_process(self, documents: List[Document]): i = 0 for d in documents: documents[i].page_content = d.page_content.replace("\n", "") i += 1 return documents