#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os from typing import List import markdown from bs4 import BeautifulSoup from langchain.schema import Document from langchain.text_splitter import SpacyTextSplitter from pilot.configs.config import Config from pilot.source_embedding import SourceEmbedding, register from pilot.source_embedding.EncodeTextLoader import EncodeTextLoader from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter CFG = Config() class MarkdownEmbedding(SourceEmbedding): """markdown embedding for read markdown document.""" def __init__(self, file_path, vector_store_config): """Initialize with markdown path.""" super().__init__(file_path, vector_store_config) self.file_path = file_path self.vector_store_config = vector_store_config # self.encoding = encoding @register def read(self): """Load from markdown path.""" loader = EncodeTextLoader(self.file_path) textsplitter = SpacyTextSplitter( pipeline="zh_core_web_sm", chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, chunk_overlap=100, ) return loader.load_and_split(textsplitter) @register def data_process(self, documents: List[Document]): i = 0 for d in documents: content = markdown.markdown(d.page_content) soup = BeautifulSoup(content, "html.parser") for tag in soup(["!doctype", "meta", "i.fa"]): tag.extract() documents[i].page_content = soup.get_text() documents[i].page_content = documents[i].page_content.replace("\n", " ") i += 1 return documents