#!/usr/bin/env python3 # -*- coding:utf-8 -*- import os from langchain.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma from pilot.configs.model_config import DATASETS_DIR, VECTORE_PATH from pilot.model.llm_out.vicuna_llm import VicunaEmbeddingLLM embeddings = VicunaEmbeddingLLM() def knownledge_tovec(filename): with open(filename, "r") as f: knownledge = f.read() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_text(knownledge) docsearch = Chroma.from_texts( texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))] ) return docsearch def knownledge_tovec_st(filename): """Use sentence transformers to embedding the document. https://github.com/UKPLab/sentence-transformers """ from pilot.configs.model_config import LLM_MODEL_CONFIG embeddings = HuggingFaceEmbeddings( model_name=LLM_MODEL_CONFIG["sentence-transforms"] ) with open(filename, "r") as f: knownledge = f.read() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_text(knownledge) docsearch = Chroma.from_texts( texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))] ) return docsearch def load_knownledge_from_doc(): """Loader Knownledge from current datasets # TODO if the vector store is exists, just use it. """ if not os.path.exists(DATASETS_DIR): print( "Not Exists Local DataSets, We will answers the Question use model default." ) from pilot.configs.model_config import LLM_MODEL_CONFIG embeddings = HuggingFaceEmbeddings( model_name=LLM_MODEL_CONFIG["sentence-transforms"] ) files = os.listdir(DATASETS_DIR) for file in files: if not os.path.isdir(file): filename = os.path.join(DATASETS_DIR, file) with open(filename, "r") as f: knownledge = f.read() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_owerlap=0) texts = text_splitter.split_text(knownledge) docsearch = Chroma.from_texts( texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))], persist_directory=os.path.join(VECTORE_PATH, ".vectore"), ) return docsearch def get_vector_storelist(): if not os.path.exists(VECTORE_PATH): return [] return os.listdir(VECTORE_PATH)