# from langchain.embeddings import HuggingFaceEmbeddings # from langchain.vectorstores import Milvus # from pymilvus import Collection,utility # from pymilvus import connections, DataType, FieldSchema, CollectionSchema # # # milvus = connections.connect( # # alias="default", # # host='localhost', # # port="19530" # # ) # # collection = Collection("book") # # # # Get an existing collection. # # collection.load() # # # # search_params = {"metric_type": "L2", "params": {}, "offset": 5} # # # # results = collection.search( # # data=[[0.1, 0.2]], # # anns_field="book_intro", # # param=search_params, # # limit=10, # # expr=None, # # output_fields=['book_id'], # # consistency_level="Strong" # # ) # # # # # get the IDs of all returned hits # # results[0].ids # # # # # get the distances to the query vector from all returned hits # # results[0].distances # # # # # get the value of an output field specified in the search request. # # # vector fields are not supported yet. # # hit = results[0][0] # # hit.entity.get('title') # # # milvus = connections.connect( # # alias="default", # # host='localhost', # # port="19530" # # ) # from pilot.vector_store.milvus_store import MilvusStore # # data = ["aaa", "bbb"] # model_name = "xx/all-MiniLM-L6-v2" # embeddings = HuggingFaceEmbeddings(model_name=model_name) # # # text_embeddings = Text2Vectors() # mivuls = MilvusStore(cfg={"url": "127.0.0.1", "port": "19530", "alias": "default", "table_name": "test_k"}) # # mivuls.insert(["textc","tezt2"]) # print("success") # ct # # mivuls.from_texts(texts=data, embedding=embeddings) # # docs, # # embedding=embeddings, # # connection_args={"host": "127.0.0.1", "port": "19530", "alias": "default"} # # )