from typing import List, Optional from langchain.schema import Document from langchain.text_splitter import ( TextSplitter, SpacyTextSplitter, RecursiveCharacterTextSplitter, ) from pilot.embedding_engine import SourceEmbedding, register class StringEmbedding(SourceEmbedding): """string embedding for read string document.""" def __init__( self, file_path, vector_store_config, source_reader: Optional = None, text_splitter: Optional[TextSplitter] = None, ): """Initialize raw text word path.""" super().__init__( file_path=file_path, vector_store_config=vector_store_config, source_reader=None, text_splitter=None, ) self.file_path = file_path self.vector_store_config = vector_store_config self.source_reader = source_reader or None self.text_splitter = text_splitter or None @register def read(self): """Load from String path.""" metadata = {"source": "raw text"} docs = [Document(page_content=self.file_path, metadata=metadata)] if self.text_splitter is None: try: self.text_splitter = SpacyTextSplitter( pipeline="zh_core_web_sm", chunk_size=500, chunk_overlap=100, ) except Exception: self.text_splitter = RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=100 ) return self.text_splitter.split_documents(docs) return docs @register def data_process(self, documents: List[Document]): i = 0 for d in documents: documents[i].page_content = d.page_content.replace("\n", "") i += 1 return documents