#!/usr/bin/env python3 # -*- coding: utf-8 -*- from typing import Optional, Dict from pilot.configs.model_config import get_device from pilot.model.adapter import get_llm_model_adapter, BaseLLMAdaper, ModelType from pilot.model.parameter import ( ModelParameters, LlamaCppModelParameters, ProxyModelParameters, ) from pilot.utils import get_gpu_memory from pilot.utils.parameter_utils import EnvArgumentParser, _genenv_ignoring_key_case from pilot.logs import logger def _check_multi_gpu_or_4bit_quantization(model_params: ModelParameters): # TODO: vicuna-v1.5 8-bit quantization info is slow # TODO: support wizardlm quantization, see: https://huggingface.co/WizardLM/WizardLM-13B-V1.2/discussions/5 model_name = model_params.model_name.lower() supported_models = ["llama", "baichuan", "vicuna"] return any(m in model_name for m in supported_models) def _check_quantization(model_params: ModelParameters): model_name = model_params.model_name.lower() has_quantization = any([model_params.load_8bit or model_params.load_4bit]) if has_quantization: if model_params.device != "cuda": logger.warn( "8-bit quantization and 4-bit quantization just supported by cuda" ) return False elif "chatglm" in model_name: if "int4" not in model_name: logger.warn( "chatglm or chatglm2 not support quantization now, see: https://github.com/huggingface/transformers/issues/25228" ) return False return has_quantization def _get_model_real_path(model_name, default_model_path) -> str: """Get model real path by model name priority from high to low: 1. environment variable with key: {model_name}_model_path 2. environment variable with key: model_path 3. default_model_path """ env_prefix = model_name + "_" env_prefix = env_prefix.replace("-", "_") env_model_path = _genenv_ignoring_key_case("model_path", env_prefix=env_prefix) if env_model_path: return env_model_path return _genenv_ignoring_key_case("model_path", default_value=default_model_path) class ModelLoader: """Model loader is a class for model load Args: model_path TODO: multi model support. """ def __init__(self, model_path: str, model_name: str = None) -> None: self.device = get_device() self.model_path = model_path self.model_name = model_name self.prompt_template: str = None # TODO multi gpu support def loader( self, load_8bit=False, load_4bit=False, debug=False, cpu_offloading=False, max_gpu_memory: Optional[str] = None, ): llm_adapter = get_llm_model_adapter(self.model_name, self.model_path) model_type = llm_adapter.model_type() param_cls = llm_adapter.model_param_class(model_type) args_parser = EnvArgumentParser() # Read the parameters of the model from the environment variable according to the model name prefix, which currently has the highest priority # vicuna_13b_max_gpu_memory=13Gib or VICUNA_13B_MAX_GPU_MEMORY=13Gib env_prefix = self.model_name + "_" env_prefix = env_prefix.replace("-", "_") model_params = args_parser.parse_args_into_dataclass( param_cls, env_prefix=env_prefix, device=self.device, model_path=self.model_path, model_name=self.model_name, max_gpu_memory=max_gpu_memory, cpu_offloading=cpu_offloading, load_8bit=load_8bit, load_4bit=load_4bit, verbose=debug, ) self.prompt_template = model_params.prompt_template logger.info(f"model_params:\n{model_params}") if model_type == ModelType.HF: return huggingface_loader(llm_adapter, model_params) elif model_type == ModelType.LLAMA_CPP: return llamacpp_loader(llm_adapter, model_params) else: raise Exception(f"Unkown model type {model_type}") def loader_with_params(self, model_params: ModelParameters): llm_adapter = get_llm_model_adapter(self.model_name, self.model_path) model_type = llm_adapter.model_type() self.prompt_template = model_params.prompt_template if model_type == ModelType.HF: return huggingface_loader(llm_adapter, model_params) elif model_type == ModelType.LLAMA_CPP: return llamacpp_loader(llm_adapter, model_params) elif model_type == ModelType.PROXY: return proxyllm_loader(llm_adapter, model_params) else: raise Exception(f"Unkown model type {model_type}") def huggingface_loader(llm_adapter: BaseLLMAdaper, model_params: ModelParameters): import torch from pilot.model.compression import compress_module device = model_params.device max_memory = None # if device is cpu or mps. gpu need to be zero num_gpus = 0 if device == "cpu": kwargs = {"torch_dtype": torch.float32} elif device == "cuda": kwargs = {"torch_dtype": torch.float16} num_gpus = torch.cuda.device_count() available_gpu_memory = get_gpu_memory(num_gpus) max_memory = { i: str(int(available_gpu_memory[i] * 0.85)) + "GiB" for i in range(num_gpus) } if num_gpus != 1: kwargs["device_map"] = "auto" if model_params.max_gpu_memory: logger.info( f"There has max_gpu_memory from config: {model_params.max_gpu_memory}" ) max_memory = {i: model_params.max_gpu_memory for i in range(num_gpus)} kwargs["max_memory"] = max_memory else: kwargs["max_memory"] = max_memory logger.debug(f"max_memory: {max_memory}") elif device == "mps": kwargs = {"torch_dtype": torch.float16} from pilot.model.llm.monkey_patch import ( replace_llama_attn_with_non_inplace_operations, ) replace_llama_attn_with_non_inplace_operations() else: raise ValueError(f"Invalid device: {device}") can_quantization = _check_quantization(model_params) if can_quantization and (num_gpus > 1 or model_params.load_4bit): if _check_multi_gpu_or_4bit_quantization(model_params): return load_huggingface_quantization_model( llm_adapter, model_params, kwargs, max_memory ) else: logger.warn( f"Current model {model_params.model_name} not supported quantization" ) # default loader model, tokenizer = llm_adapter.loader(model_params.model_path, kwargs) if model_params.load_8bit and num_gpus == 1 and tokenizer: # TODO merge current code into `load_huggingface_quantization_model` compress_module(model, model_params.device) if ( (device == "cuda" and num_gpus == 1 and not model_params.cpu_offloading) or device == "mps" and tokenizer ): try: model.to(device) except ValueError: pass except AttributeError: pass if model_params.verbose: print(model) return model, tokenizer def load_huggingface_quantization_model( llm_adapter: BaseLLMAdaper, model_params: ModelParameters, kwargs: Dict, max_memory: Dict[int, str], ): import torch try: from accelerate import init_empty_weights from accelerate.utils import infer_auto_device_map import transformers from transformers import ( BitsAndBytesConfig, AutoConfig, AutoModel, AutoModelForCausalLM, LlamaForCausalLM, AutoModelForSeq2SeqLM, LlamaTokenizer, AutoTokenizer, ) except ImportError as exc: raise ValueError( "Could not import depend python package " "Please install it with `pip install transformers` " "`pip install bitsandbytes``pip install accelerate`." ) from exc if ( "llama-2" in model_params.model_name.lower() and not transformers.__version__ >= "4.31.0" ): raise ValueError( "Llama-2 quantization require transformers.__version__>=4.31.0" ) params = {"low_cpu_mem_usage": True} params["low_cpu_mem_usage"] = True params["device_map"] = "auto" torch_dtype = kwargs.get("torch_dtype") if model_params.load_4bit: compute_dtype = None if model_params.compute_dtype and model_params.compute_dtype in [ "bfloat16", "float16", "float32", ]: compute_dtype = eval("torch.{}".format(model_params.compute_dtype)) quantization_config_params = { "load_in_4bit": True, "bnb_4bit_compute_dtype": compute_dtype, "bnb_4bit_quant_type": model_params.quant_type, "bnb_4bit_use_double_quant": model_params.use_double_quant, } logger.warn( "Using the following 4-bit params: " + str(quantization_config_params) ) params["quantization_config"] = BitsAndBytesConfig(**quantization_config_params) elif model_params.load_8bit and max_memory: params["quantization_config"] = BitsAndBytesConfig( load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True ) elif model_params.load_in_8bit: params["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True) params["torch_dtype"] = torch_dtype if torch_dtype else torch.float16 params["max_memory"] = max_memory if "chatglm" in model_params.model_name.lower(): LoaderClass = AutoModel else: config = AutoConfig.from_pretrained( model_params.model_path, trust_remote_code=model_params.trust_remote_code ) if config.to_dict().get("is_encoder_decoder", False): LoaderClass = AutoModelForSeq2SeqLM else: LoaderClass = AutoModelForCausalLM if model_params.load_8bit and max_memory is not None: config = AutoConfig.from_pretrained( model_params.model_path, trust_remote_code=model_params.trust_remote_code ) with init_empty_weights(): model = LoaderClass.from_config( config, trust_remote_code=model_params.trust_remote_code ) model.tie_weights() params["device_map"] = infer_auto_device_map( model, dtype=torch.int8, max_memory=params["max_memory"].copy(), no_split_module_classes=model._no_split_modules, ) try: if model_params.trust_remote_code: params["trust_remote_code"] = True logger.info(f"params: {params}") model = LoaderClass.from_pretrained(model_params.model_path, **params) except Exception as e: logger.error( f"Load quantization model failed, error: {str(e)}, params: {params}" ) raise e # Loading the tokenizer if type(model) is LlamaForCausalLM: logger.info( f"Current model is type of: LlamaForCausalLM, load tokenizer by LlamaTokenizer" ) tokenizer = LlamaTokenizer.from_pretrained( model_params.model_path, clean_up_tokenization_spaces=True ) # Leaving this here until the LLaMA tokenizer gets figured out. # For some people this fixes things, for others it causes an error. try: tokenizer.eos_token_id = 2 tokenizer.bos_token_id = 1 tokenizer.pad_token_id = 0 except Exception as e: logger.warn(f"{str(e)}") else: logger.info( f"Current model type is not LlamaForCausalLM, load tokenizer by AutoTokenizer" ) tokenizer = AutoTokenizer.from_pretrained( model_params.model_path, trust_remote_code=model_params.trust_remote_code, use_fast=llm_adapter.use_fast_tokenizer(), ) return model, tokenizer def llamacpp_loader(llm_adapter: BaseLLMAdaper, model_params: LlamaCppModelParameters): try: from pilot.model.llm.llama_cpp.llama_cpp import LlamaCppModel except ImportError as exc: raise ValueError( "Could not import python package: llama-cpp-python " "Please install db-gpt llama support with `cd $DB-GPT-DIR && pip install .[llama_cpp]` " "or install llama-cpp-python with `pip install llama-cpp-python`" ) from exc model_path = model_params.model_path model, tokenizer = LlamaCppModel.from_pretrained(model_path, model_params) return model, tokenizer def proxyllm_loader(llm_adapter: BaseLLMAdaper, model_params: ProxyModelParameters): from pilot.model.proxy.llms.proxy_model import ProxyModel logger.info("Load proxyllm") model = ProxyModel(model_params) return model, model