import json import os import sys from typing import List from fastapi import APIRouter from langchain.embeddings import HuggingFaceEmbeddings ROOT_PATH = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) sys.path.append(ROOT_PATH) from pilot.configs.config import Config from pilot.configs.model_config import LLM_MODEL_CONFIG from pilot.server.api_v1.api_view_model import Result from pilot.embedding_engine.knowledge_embedding import KnowledgeEmbedding from pilot.server.knowledge.knowledge_service import KnowledgeService from pilot.server.knowledge.request.knowledge_request import ( KnowledgeQueryRequest, KnowledgeQueryResponse, KnowledgeDocumentRequest, DocumentSyncRequest, ChunkQueryRequest, DocumentQueryRequest, ) from pilot.server.knowledge.request.knowledge_request import KnowledgeSpaceRequest CFG = Config() router = APIRouter() embeddings = HuggingFaceEmbeddings(model_name=LLM_MODEL_CONFIG[CFG.EMBEDDING_MODEL]) knowledge_space_service = KnowledgeService() @router.post("/knowledge/space/add") def space_add(request: KnowledgeSpaceRequest): print(f"/space/add params: {request}") try: knowledge_space_service.create_knowledge_space(request) return Result.succ([]) except Exception as e: return Result.faild(code="E000X", msg=f"space add error {e}") @router.post("/knowledge/space/list") def space_list(request: KnowledgeSpaceRequest): print(f"/space/list params:") try: return Result.succ(knowledge_space_service.get_knowledge_space(request)) except Exception as e: return Result.faild(code="E000X", msg=f"space list error {e}") @router.post("/knowledge/{space_name}/document/add") def document_add(space_name: str, request: KnowledgeDocumentRequest): print(f"/document/add params: {space_name}, {request}") try: knowledge_space_service.create_knowledge_document( space=space_name, request=request ) return Result.succ([]) except Exception as e: return Result.faild(code="E000X", msg=f"document add error {e}") @router.post("/knowledge/{space_name}/document/list") def document_list(space_name: str, query_request: DocumentQueryRequest): print(f"/document/list params: {space_name}, {query_request}") try: return Result.succ(knowledge_space_service.get_knowledge_documents( space_name, query_request )) except Exception as e: return Result.faild(code="E000X", msg=f"document list error {e}") @router.post("/knowledge/{space_name}/document/sync") def document_sync(space_name: str, request: DocumentSyncRequest): print(f"Received params: {space_name}, {request}") try: knowledge_space_service.sync_knowledge_document( space_name=space_name, doc_ids=request.doc_ids ) Result.succ([]) except Exception as e: return Result.faild(code="E000X", msg=f"document sync error {e}") @router.post("/knowledge/{space_name}/chunk/list") def document_list(space_name: str, query_request: ChunkQueryRequest): print(f"/document/list params: {space_name}, {query_request}") try: Result.succ(knowledge_space_service.get_document_chunks( query_request )) except Exception as e: return Result.faild(code="E000X", msg=f"document chunk list error {e}") @router.post("/knowledge/{vector_name}/query") def similar_query(space_name: str, query_request: KnowledgeQueryRequest): print(f"Received params: {space_name}, {query_request}") client = KnowledgeEmbedding( model_name=embeddings, vector_store_config={"vector_store_name": space_name} ) docs = client.similar_search(query_request.query, query_request.top_k) res = [ KnowledgeQueryResponse(text=d.page_content, source=d.metadata["source"]) for d in docs ] return {"response": res}