Docker Install ================================== ### Docker (Experimental) #### 1. Preparing docker images **Pull docker image from the [Eosphoros AI Docker Hub](https://hub.docker.com/u/eosphorosai)** ```bash docker pull eosphorosai/dbgpt:latest ``` **(Optional) Building Docker image** ```bash bash docker/build_all_images.sh ``` Review images by listing them: ```bash docker images|grep "eosphorosai/dbgpt" ``` Output should look something like the following: ``` eosphorosai/dbgpt-allinone latest 349d49726588 27 seconds ago 15.1GB eosphorosai/dbgpt latest eb3cdc5b4ead About a minute ago 14.5GB ``` `eosphorosai/dbgpt` is the base image, which contains the project's base dependencies and a sqlite database. `eosphorosai/dbgpt-allinone` build from `eosphorosai/dbgpt`, which contains a mysql database. You can pass some parameters to docker/build_all_images.sh. ```bash bash docker/build_all_images.sh \ --base-image nvidia/cuda:11.8.0-runtime-ubuntu22.04 \ --pip-index-url https://pypi.tuna.tsinghua.edu.cn/simple \ --language zh ``` You can execute the command `bash docker/build_all_images.sh --help` to see more usage. #### 2. Run docker container **Run with local model and SQLite database** ```bash docker run --gpus all -d \ -p 5000:5000 \ -e LOCAL_DB_TYPE=sqlite \ -e LOCAL_DB_PATH=data/default_sqlite.db \ -e LLM_MODEL=vicuna-13b-v1.5 \ -e LANGUAGE=zh \ -v /data/models:/app/models \ --name dbgpt \ eosphorosai/dbgpt ``` Open http://localhost:5000 with your browser to see the product. - `-e LLM_MODEL=vicuna-13b-v1.5`, means we use vicuna-13b-v1.5 as llm model, see /pilot/configs/model_config.LLM_MODEL_CONFIG - `-v /data/models:/app/models`, means we mount the local model file directory `/data/models` to the docker container directory `/app/models`, please replace it with your model file directory. You can see log with command: ```bash docker logs dbgpt -f ``` **Run with local model and MySQL database** ```bash docker run --gpus all -d -p 3306:3306 \ -p 5000:5000 \ -e LOCAL_DB_HOST=127.0.0.1 \ -e LOCAL_DB_PASSWORD=aa123456 \ -e MYSQL_ROOT_PASSWORD=aa123456 \ -e LLM_MODEL=vicuna-13b-v1.5 \ -e LANGUAGE=zh \ -v /data/models:/app/models \ --name db-gpt-allinone \ db-gpt-allinone ``` Open http://localhost:5000 with your browser to see the product. - `-e LLM_MODEL=vicuna-13b-v1.5`, means we use vicuna-13b-v1.5 as llm model, see /pilot/configs/model_config.LLM_MODEL_CONFIG - `-v /data/models:/app/models`, means we mount the local model file directory `/data/models` to the docker container directory `/app/models`, please replace it with your model file directory. You can see log with command: ```bash docker logs db-gpt-allinone -f ``` **Run with openai interface** ```bash PROXY_API_KEY="You api key" PROXY_SERVER_URL="https://api.openai.com/v1/chat/completions" docker run --gpus all -d -p 3306:3306 \ -p 5000:5000 \ -e LOCAL_DB_HOST=127.0.0.1 \ -e LOCAL_DB_PASSWORD=aa123456 \ -e MYSQL_ROOT_PASSWORD=aa123456 \ -e LLM_MODEL=proxyllm \ -e PROXY_API_KEY=$PROXY_API_KEY \ -e PROXY_SERVER_URL=$PROXY_SERVER_URL \ -e LANGUAGE=zh \ -v /data/models/text2vec-large-chinese:/app/models/text2vec-large-chinese \ --name db-gpt-allinone \ db-gpt-allinone ``` - `-e LLM_MODEL=proxyllm`, means we use proxy llm(openai interface, fastchat interface...) - `-v /data/models/text2vec-large-chinese:/app/models/text2vec-large-chinese`, means we mount the local text2vec model to the docker container. Open http://localhost:5000 with your browser to see the product.