#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os from typing import List import markdown from bs4 import BeautifulSoup from langchain.document_loaders import TextLoader from langchain.schema import Document from pilot.configs.config import Config from pilot.source_embedding import SourceEmbedding, register from pilot.source_embedding.EncodeTextLoader import EncodeTextLoader from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter CFG = Config() class MarkdownEmbedding(SourceEmbedding): """markdown embedding for read markdown document.""" def __init__(self, file_path, vector_store_config): """Initialize with markdown path.""" super().__init__(file_path, vector_store_config) self.file_path = file_path self.vector_store_config = vector_store_config # self.encoding = encoding @register def read(self): """Load from markdown path.""" loader = EncodeTextLoader(self.file_path) text_splitter = CHNDocumentSplitter( pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE ) return loader.load_and_split(text_splitter) @register def read_batch(self): """Load from markdown path.""" docments = [] for root, _, files in os.walk(self.file_path, topdown=False): for file in files: filename = os.path.join(root, file) loader = TextLoader(filename) # text_splitor = CHNDocumentSplitter(chunk_size=1000, chunk_overlap=20, length_function=len) # docs = loader.load_and_split() docs = loader.load() # 更新metadata数据 new_docs = [] for doc in docs: doc.metadata = { "source": doc.metadata["source"].replace(self.file_path, "") } print("doc is embedding ... ", doc.metadata) new_docs.append(doc) docments += new_docs return docments @register def data_process(self, documents: List[Document]): i = 0 for d in documents: content = markdown.markdown(d.page_content) soup = BeautifulSoup(content, "html.parser") for tag in soup(["!doctype", "meta", "i.fa"]): tag.extract() documents[i].page_content = soup.get_text() documents[i].page_content = documents[i].page_content.replace("\n", " ") i += 1 return documents