from typing import List from bs4 import BeautifulSoup from langchain.document_loaders import WebBaseLoader from langchain.schema import Document from langchain.text_splitter import CharacterTextSplitter from pilot.configs.config import Config from pilot.configs.model_config import KNOWLEDGE_CHUNK_SPLIT_SIZE from pilot.source_embedding import SourceEmbedding, register from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter CFG = Config() class URLEmbedding(SourceEmbedding): """url embedding for read url document.""" def __init__(self, file_path, vector_store_config): """Initialize with url path.""" super().__init__(file_path, vector_store_config) self.file_path = file_path self.vector_store_config = vector_store_config @register def read(self): """Load from url path.""" loader = WebBaseLoader(web_path=self.file_path) if CFG.LANGUAGE == "en": text_splitter = CharacterTextSplitter( chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE, chunk_overlap=20, length_function=len, ) else: text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=1000) return loader.load_and_split(text_splitter) @register def data_process(self, documents: List[Document]): i = 0 for d in documents: content = d.page_content.replace("\n", "") soup = BeautifulSoup(content, "html.parser") for tag in soup(["!doctype", "meta"]): tag.extract() documents[i].page_content = soup.get_text() i += 1 return documents