#!/usr/bin/env python3 # -*- coding: utf-8 -*- from typing import List from langchain.document_loaders import PyPDFLoader from langchain.schema import Document from langchain.text_splitter import SpacyTextSplitter, RecursiveCharacterTextSplitter from pilot.embedding_engine import SourceEmbedding, register class PDFEmbedding(SourceEmbedding): """pdf embedding for read pdf document.""" def __init__(self, file_path, vector_store_config, text_splitter=None): """Initialize pdf word path.""" super().__init__(file_path, vector_store_config, text_splitter=None) self.file_path = file_path self.vector_store_config = vector_store_config self.text_splitter = text_splitter or None @register def read(self): """Load from pdf path.""" loader = PyPDFLoader(self.file_path) if self.text_splitter is None: try: self.text_splitter = SpacyTextSplitter( pipeline="zh_core_web_sm", chunk_size=100, chunk_overlap=100, ) except Exception: self.text_splitter = RecursiveCharacterTextSplitter( chunk_size=100, chunk_overlap=50 ) return loader.load_and_split(self.text_splitter) @register def data_process(self, documents: List[Document]): i = 0 for d in documents: documents[i].page_content = d.page_content.replace("\n", "") i += 1 return documents