from langchain.vectorstores import Milvus from pymilvus import Collection,utility from pymilvus import connections, DataType, FieldSchema, CollectionSchema # milvus = connections.connect( # alias="default", # host='localhost', # port="19530" # ) # collection = Collection("book") # Get an existing collection. # collection.load() # # search_params = {"metric_type": "L2", "params": {}, "offset": 5} # # results = collection.search( # data=[[0.1, 0.2]], # anns_field="book_intro", # param=search_params, # limit=10, # expr=None, # output_fields=['book_id'], # consistency_level="Strong" # ) # # # get the IDs of all returned hits # results[0].ids # # # get the distances to the query vector from all returned hits # results[0].distances # # # get the value of an output field specified in the search request. # # vector fields are not supported yet. # hit = results[0][0] # hit.entity.get('title') milvus = connections.connect( alias="default", host='localhost', port="19530" ) data = ["aaa", "bbb"] # text_embeddings = Text2Vectors() mivuls = Milvus(collection_name='document', embedding_function= text_embeddings, connection_args={"host": "127.0.0.1", "port": "19530", "alias":"default"}, text_field="") mivuls.from_texts(texts=data, embedding=text_embeddings) # docs, # embedding=embeddings, # connection_args={"host": "127.0.0.1", "port": "19530", "alias": "default"} # )