#!/usr/bin/env python3 # -*- coding: utf-8 -*- from typing import List from langchain.document_loaders import PyPDFLoader from langchain.schema import Document from pilot.configs.model_config import KNOWLEDGE_CHUNK_SPLIT_SIZE from pilot.source_embedding import SourceEmbedding, register from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter class PDFEmbedding(SourceEmbedding): """pdf embedding for read pdf document.""" def __init__(self, file_path, model_name, vector_store_config, encoding): """Initialize with pdf path.""" super().__init__(file_path, model_name, vector_store_config) self.file_path = file_path self.model_name = model_name self.vector_store_config = vector_store_config self.encoding = encoding @register def read(self): """Load from pdf path.""" # loader = UnstructuredPaddlePDFLoader(self.file_path) loader = PyPDFLoader(self.file_path) textsplitter = CHNDocumentSplitter( pdf=True, sentence_size=KNOWLEDGE_CHUNK_SPLIT_SIZE ) return loader.load_and_split(textsplitter) @register def data_process(self, documents: List[Document]): i = 0 for d in documents: documents[i].page_content = d.page_content.replace("\n", "") i += 1 return documents