DB-GPT/examples/agents/auto_plan_agent_dialogue_example.py
明天 0bc478b7b5
Feat/note book (#2134)
Co-authored-by: sunshinesmilelk <41573506+sunshinesmilelk@users.noreply.github.com>
Co-authored-by: csunny <cfqsunny@163.com>
2024-11-21 20:33:54 +08:00

84 lines
2.4 KiB
Python

"""Agents: auto plan agents example?
Examples:
Execute the following command in the terminal:
Set env params.
.. code-block:: shell
export OPENAI_API_KEY=sk-xx
export OPENAI_API_BASE=https://xx:80/v1
run example.
..code-block:: shell
python examples/agents/auto_plan_agent_dialogue_example.py
"""
import asyncio
import os
from dbgpt.agent import (
AgentContext,
AgentMemory,
AutoPlanChatManager,
LLMConfig,
UserProxyAgent,
)
from dbgpt.agent.expand.code_assistant_agent import CodeAssistantAgent
from dbgpt.util.tracer import initialize_tracer
initialize_tracer(
"/tmp/agent_auto_plan_agent_dialogue_example_trace.jsonl", create_system_app=True
)
async def main():
from dbgpt.model.proxy import OpenAILLMClient
agent_memory = AgentMemory()
from dbgpt.model.proxy.llms.tongyi import TongyiLLMClient
llm_client = TongyiLLMClient(
model_alias="qwen2-72b-instruct",
)
context: AgentContext = AgentContext(
conv_id="test456", gpts_app_name="代码分析助手", max_new_tokens=2048
)
agent_memory = AgentMemory()
agent_memory.gpts_memory.init(conv_id="test456")
try:
coder = (
await CodeAssistantAgent()
.bind(context)
.bind(LLMConfig(llm_client=llm_client))
.bind(agent_memory)
.build()
)
manager = (
await AutoPlanChatManager()
.bind(context)
.bind(agent_memory)
.bind(LLMConfig(llm_client=llm_client))
.build()
)
manager.hire([coder])
user_proxy = await UserProxyAgent().bind(context).bind(agent_memory).build()
await user_proxy.initiate_chat(
recipient=manager,
reviewer=user_proxy,
message="Obtain simple information about issues in the repository 'eosphoros-ai/DB-GPT' in the past three days and analyze the data. Create a Markdown table grouped by day and status.",
# message="Find papers on gpt-4 in the past three weeks on arxiv, and organize their titles, authors, and links into a markdown table",
# message="find papers on LLM applications from arxiv in the last month, create a markdown table of different domains.",
)
finally:
agent_memory.gpts_memory.clear(conv_id="test456")
if __name__ == "__main__":
## dbgpt-vis message infos
asyncio.run(main())