mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-01 00:03:29 +00:00
Signed-off-by: shanhaikang.shk <shanhaikang.shk@oceanbase.com> Co-authored-by: Fangyin Cheng <staneyffer@gmail.com>
102 lines
3.2 KiB
Python
102 lines
3.2 KiB
Python
import logging
|
|
from concurrent.futures import Executor
|
|
from typing import Iterator, Optional
|
|
|
|
from dbgpt.core import MessageConverter, ModelOutput, ModelRequest, ModelRequestContext
|
|
from dbgpt.model.parameter import ProxyModelParameters
|
|
from dbgpt.model.proxy.base import ProxyLLMClient
|
|
from dbgpt.model.proxy.llms.proxy_model import ProxyModel
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def ollama_generate_stream(
|
|
model: ProxyModel, tokenizer, params, device, context_len=4096
|
|
):
|
|
client: OllamaLLMClient = model.proxy_llm_client
|
|
context = ModelRequestContext(stream=True, user_name=params.get("user_name"))
|
|
request = ModelRequest.build_request(
|
|
client.default_model,
|
|
messages=params["messages"],
|
|
temperature=params.get("temperature"),
|
|
context=context,
|
|
max_new_tokens=params.get("max_new_tokens"),
|
|
)
|
|
for r in client.sync_generate_stream(request):
|
|
yield r
|
|
|
|
|
|
class OllamaLLMClient(ProxyLLMClient):
|
|
def __init__(
|
|
self,
|
|
model: Optional[str] = None,
|
|
host: Optional[str] = None,
|
|
model_alias: Optional[str] = "ollama_proxyllm",
|
|
context_length: Optional[int] = 4096,
|
|
executor: Optional[Executor] = None,
|
|
):
|
|
if not model:
|
|
model = "llama2"
|
|
if not host:
|
|
host = "http://localhost:11434"
|
|
self._model = model
|
|
self._host = host
|
|
|
|
super().__init__(
|
|
model_names=[model, model_alias],
|
|
context_length=context_length,
|
|
executor=executor,
|
|
)
|
|
|
|
@classmethod
|
|
def new_client(
|
|
cls,
|
|
model_params: ProxyModelParameters,
|
|
default_executor: Optional[Executor] = None,
|
|
) -> "OllamaLLMClient":
|
|
return cls(
|
|
model=model_params.proxyllm_backend,
|
|
host=model_params.proxy_server_url,
|
|
model_alias=model_params.model_name,
|
|
context_length=model_params.max_context_size,
|
|
executor=default_executor,
|
|
)
|
|
|
|
@property
|
|
def default_model(self) -> str:
|
|
return self._model
|
|
|
|
def sync_generate_stream(
|
|
self,
|
|
request: ModelRequest,
|
|
message_converter: Optional[MessageConverter] = None,
|
|
) -> Iterator[ModelOutput]:
|
|
try:
|
|
import ollama
|
|
from ollama import Client
|
|
except ImportError as e:
|
|
raise ValueError(
|
|
"Could not import python package: ollama "
|
|
"Please install ollama by command `pip install ollama"
|
|
) from e
|
|
request = self.local_covert_message(request, message_converter)
|
|
messages = request.to_common_messages()
|
|
|
|
model = request.model or self._model
|
|
client = Client(self._host)
|
|
try:
|
|
stream = client.chat(
|
|
model=model,
|
|
messages=messages,
|
|
stream=True,
|
|
)
|
|
content = ""
|
|
for chunk in stream:
|
|
content = content + chunk["message"]["content"]
|
|
yield ModelOutput(text=content, error_code=0)
|
|
except ollama.ResponseError as e:
|
|
return ModelOutput(
|
|
text=f"**Ollama Response Error, Please CheckErrorInfo.**: {e}",
|
|
error_code=-1,
|
|
)
|