DB-GPT/dbgpt/model/utils/chatgpt_utils.py
2024-03-27 12:50:05 +08:00

275 lines
9.1 KiB
Python

from __future__ import annotations
import importlib.metadata as metadata
import logging
import os
from dataclasses import dataclass
from typing import (
TYPE_CHECKING,
AsyncIterator,
Awaitable,
Callable,
Optional,
Tuple,
Union,
)
from dbgpt._private.pydantic import model_to_json
from dbgpt.core.awel import TransformStreamAbsOperator
from dbgpt.core.awel.flow import IOField, OperatorCategory, OperatorType, ViewMetadata
from dbgpt.core.interface.llm import ModelOutput
from dbgpt.core.operators import BaseLLM
from dbgpt.util.i18n_utils import _
if TYPE_CHECKING:
import httpx
from httpx._types import ProxiesTypes
from openai import AsyncAzureOpenAI, AsyncOpenAI
ClientType = Union[AsyncAzureOpenAI, AsyncOpenAI]
logger = logging.getLogger(__name__)
@dataclass
class OpenAIParameters:
"""A class to represent a LLM model."""
api_type: str = "open_ai"
api_base: Optional[str] = None
api_key: Optional[str] = None
api_version: Optional[str] = None
api_azure_deployment: Optional[str] = None
full_url: Optional[str] = None
proxies: Optional["ProxiesTypes"] = None
def _initialize_openai_v1(init_params: OpenAIParameters):
try:
from openai import OpenAI
except ImportError as exc:
raise ValueError(
"Could not import python package: openai "
"Please install openai by command `pip install openai"
) from exc
if not metadata.version("openai") >= "1.0.0":
raise ImportError("Please upgrade openai package to version 1.0.0 or above")
api_type: Optional[str] = init_params.api_type
api_base: Optional[str] = init_params.api_base
api_key: Optional[str] = init_params.api_key
api_version: Optional[str] = init_params.api_version
full_url: Optional[str] = init_params.full_url
api_type = api_type or os.getenv("OPENAI_API_TYPE", "open_ai")
base_url = api_base or os.getenv(
"OPENAI_API_BASE",
os.getenv("AZURE_OPENAI_ENDPOINT") if api_type == "azure" else None,
)
api_key = api_key or os.getenv(
"OPENAI_API_KEY",
os.getenv("AZURE_OPENAI_KEY") if api_type == "azure" else None,
)
api_version = api_version or os.getenv("OPENAI_API_VERSION")
api_azure_deployment = init_params.api_azure_deployment or os.getenv(
"API_AZURE_DEPLOYMENT"
)
if not base_url and full_url:
base_url = full_url.split("/chat/completions")[0]
if api_key is None:
raise ValueError("api_key is required, please set OPENAI_API_KEY environment")
if base_url is None:
raise ValueError("base_url is required, please set OPENAI_BASE_URL environment")
if base_url.endswith("/"):
base_url = base_url[:-1]
openai_params = {"api_key": api_key, "base_url": base_url}
return openai_params, api_type, api_version, api_azure_deployment
def _initialize_openai(params: OpenAIParameters):
try:
import openai
except ImportError as exc:
raise ValueError(
"Could not import python package: openai "
"Please install openai by command `pip install openai` "
) from exc
api_type = params.api_type or os.getenv("OPENAI_API_TYPE", "open_ai")
api_base = params.api_base or os.getenv(
"OPENAI_API_TYPE",
os.getenv("AZURE_OPENAI_ENDPOINT") if api_type == "azure" else None,
)
api_key = params.api_key or os.getenv(
"OPENAI_API_KEY",
os.getenv("AZURE_OPENAI_KEY") if api_type == "azure" else None,
)
api_version = params.api_version or os.getenv("OPENAI_API_VERSION")
if not api_base and params.full_url:
# Adapt previous proxy_server_url configuration
api_base = params.full_url.split("/chat/completions")[0]
if api_type:
openai.api_type = api_type
if api_base:
openai.api_base = api_base
if api_key:
openai.api_key = api_key
if api_version:
openai.api_version = api_version
if params.proxies:
openai.proxy = params.proxies
def _build_openai_client(init_params: OpenAIParameters) -> Tuple[str, ClientType]:
import httpx
openai_params, api_type, api_version, api_azure_deployment = _initialize_openai_v1(
init_params
)
if api_type == "azure":
from openai import AsyncAzureOpenAI
return api_type, AsyncAzureOpenAI(
api_key=openai_params["api_key"],
api_version=api_version,
azure_deployment=api_azure_deployment,
azure_endpoint=openai_params["base_url"],
http_client=httpx.AsyncClient(proxies=init_params.proxies),
)
else:
from openai import AsyncOpenAI
return api_type, AsyncOpenAI(
**openai_params, http_client=httpx.AsyncClient(proxies=init_params.proxies)
)
class OpenAIStreamingOutputOperator(TransformStreamAbsOperator[ModelOutput, str]):
"""Transform ModelOutput to openai stream format."""
incremental_output = True
output_format = "SSE"
metadata = ViewMetadata(
label=_("OpenAI Streaming Output Operator"),
name="openai_streaming_output_operator",
operator_type=OperatorType.TRANSFORM_STREAM,
category=OperatorCategory.OUTPUT_PARSER,
description=_("The OpenAI streaming LLM operator."),
parameters=[],
inputs=[
IOField.build_from(
_("Upstream Model Output"),
"model_output",
ModelOutput,
is_list=True,
description=_("The model output of upstream."),
)
],
outputs=[
IOField.build_from(
_("Model Output"),
"model_output",
str,
is_list=True,
description=_(
"The model output after transformed to openai stream format."
),
)
],
)
async def transform_stream(self, model_output: AsyncIterator[ModelOutput]):
async def model_caller() -> str:
"""Read model name from share data.
In streaming mode, this transform_stream function will be executed
before parent operator(Streaming Operator is trigger by downstream Operator).
"""
return await self.current_dag_context.get_from_share_data(
BaseLLM.SHARE_DATA_KEY_MODEL_NAME
)
async for output in _to_openai_stream(model_output, None, model_caller):
yield output
async def _to_openai_stream(
output_iter: AsyncIterator[ModelOutput],
model: Optional[str] = None,
model_caller: Callable[[], Union[Awaitable[str], str]] = None,
) -> AsyncIterator[str]:
"""Convert the output_iter to openai stream format.
Args:
output_iter (AsyncIterator[ModelOutput]): The output iterator.
model (Optional[str], optional): The model name. Defaults to None.
model_caller (Callable[[None], Union[Awaitable[str], str]], optional): The model caller. Defaults to None.
"""
import asyncio
import json
import shortuuid
from dbgpt.core.schema.api import (
ChatCompletionResponseStreamChoice,
ChatCompletionStreamResponse,
DeltaMessage,
)
id = f"chatcmpl-{shortuuid.random()}"
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant"),
finish_reason=None,
)
chunk = ChatCompletionStreamResponse(
id=id, choices=[choice_data], model=model or ""
)
yield f"data: {model_to_json(chunk, exclude_unset=True, ensure_ascii=False)}\n\n"
previous_text = ""
finish_stream_events = []
async for model_output in output_iter:
if model_caller is not None:
if asyncio.iscoroutinefunction(model_caller):
model = await model_caller()
else:
model = model_caller()
model_output: ModelOutput = model_output
if model_output.error_code != 0:
yield f"data: {json.dumps(model_output.to_dict(), ensure_ascii=False)}\n\n"
yield "data: [DONE]\n\n"
return
decoded_unicode = model_output.text.replace("\ufffd", "")
delta_text = decoded_unicode[len(previous_text) :]
previous_text = (
decoded_unicode
if len(decoded_unicode) > len(previous_text)
else previous_text
)
if len(delta_text) == 0:
delta_text = None
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(content=delta_text),
finish_reason=model_output.finish_reason,
)
chunk = ChatCompletionStreamResponse(id=id, choices=[choice_data], model=model)
if delta_text is None:
if model_output.finish_reason is not None:
finish_stream_events.append(chunk)
continue
yield f"data: {model_to_json(chunk, exclude_unset=True, ensure_ascii=False)}\n\n"
for finish_chunk in finish_stream_events:
yield f"data: {model_to_json(finish_chunk, exclude_none=True, ensure_ascii=False)}\n\n"
yield "data: [DONE]\n\n"