DB-GPT/dbgpt/app/openapi/api_v1/editor/service.py
明天 b124ecc10b
feat: (0.6)New UI (#1855)
Co-authored-by: 夏姜 <wenfengjiang.jwf@digital-engine.com>
Co-authored-by: aries_ckt <916701291@qq.com>
Co-authored-by: wb-lh513319 <wb-lh513319@alibaba-inc.com>
Co-authored-by: csunny <cfqsunny@163.com>
2024-08-21 17:37:45 +08:00

191 lines
8.1 KiB
Python

from __future__ import annotations
import json
import logging
from typing import TYPE_CHECKING, Dict, List, Optional
from dbgpt._private.config import Config
from dbgpt.app.openapi.api_view_model import Result
from dbgpt.app.openapi.editor_view_model import (
ChartDetail,
ChartList,
ChatDbRounds,
ChatSqlEditContext,
)
from dbgpt.component import BaseComponent, SystemApp
from dbgpt.core import BaseOutputParser
from dbgpt.core.interface.message import (
MessageStorageItem,
StorageConversation,
_split_messages_by_round,
)
from dbgpt.serve.conversation.serve import Serve as ConversationServe
if TYPE_CHECKING:
from dbgpt.datasource.base import BaseConnect
logger = logging.getLogger(__name__)
class EditorService(BaseComponent):
name = "dbgpt_app_editor_service"
def __init__(self, system_app: SystemApp):
self._system_app: SystemApp = system_app
super().__init__(system_app)
def init_app(self, system_app: SystemApp):
self._system_app = system_app
def conv_serve(self) -> ConversationServe:
return ConversationServe.get_instance(self._system_app)
def get_storage_conv(self, conv_uid: str) -> StorageConversation:
conv_serve: ConversationServe = self.conv_serve()
return StorageConversation(
conv_uid,
conv_storage=conv_serve.conv_storage,
message_storage=conv_serve.message_storage,
)
def get_editor_sql_rounds(self, conv_uid: str) -> List[ChatDbRounds]:
storage_conv: StorageConversation = self.get_storage_conv(conv_uid)
messages_by_round = _split_messages_by_round(storage_conv.messages)
result: List[ChatDbRounds] = []
for one_round_message in messages_by_round:
if not one_round_message:
continue
for message in one_round_message:
if message.type == "human":
round_name = message.content
if message.additional_kwargs.get("param_value"):
chat_db_round: ChatDbRounds = ChatDbRounds(
round=message.round_index,
db_name=message.additional_kwargs.get("param_value"),
round_name=round_name,
)
result.append(chat_db_round)
return result
def get_editor_sql_by_round(
self, conv_uid: str, round_index: int
) -> Optional[List[Dict]]:
storage_conv: StorageConversation = self.get_storage_conv(conv_uid)
messages_by_round = _split_messages_by_round(storage_conv.messages)
for one_round_message in messages_by_round:
if not one_round_message:
continue
for message in one_round_message:
if message.type == "ai" and message.round_index == round_index:
content = message.content
logger.info(f"history ai json resp: {content}")
# context = content.replace("\\n", " ").replace("\n", " ")
context_dict = _parse_pure_dict(content)
return context_dict
return None
def sql_editor_submit_and_save(
self, sql_edit_context: ChatSqlEditContext, connection: BaseConnect
):
storage_conv: StorageConversation = self.get_storage_conv(
sql_edit_context.conv_uid
)
if not storage_conv.save_message_independent:
raise ValueError(
"Submit sql and save just support independent conversation mode(after v0.4.6)"
)
conv_serve: ConversationServe = self.conv_serve()
messages_by_round = _split_messages_by_round(storage_conv.messages)
to_update_messages = []
for one_round_message in messages_by_round:
if not one_round_message:
continue
if one_round_message[0].round_index == sql_edit_context.conv_round:
for message in one_round_message:
if message.type == "ai":
db_resp = _parse_pure_dict(message.content)
db_resp["thoughts"] = sql_edit_context.new_speak
db_resp["sql"] = sql_edit_context.new_sql
message.content = json.dumps(db_resp, ensure_ascii=False)
to_update_messages.append(
MessageStorageItem(
storage_conv.conv_uid, message.index, message.to_dict()
)
)
# TODO not support update view message now
# if message.type == "view":
# data_loader = DbDataLoader()
# message.content = data_loader.get_table_view_by_conn(
# connection.run_to_df(sql_edit_context.new_sql),
# sql_edit_context.new_speak,
# )
# to_update_messages.append(
# MessageStorageItem(
# storage_conv.conv_uid, message.index, message.to_dict()
# )
# )
if to_update_messages:
conv_serve.message_storage.save_or_update_list(to_update_messages)
return
def get_editor_chart_list(self, conv_uid: str) -> Optional[ChartList]:
storage_conv: StorageConversation = self.get_storage_conv(conv_uid)
messages_by_round = _split_messages_by_round(storage_conv.messages)
for one_round_message in messages_by_round:
if not one_round_message:
continue
for message in one_round_message:
if message.type == "ai":
context_dict = _parse_pure_dict(message.content)
chart_list: ChartList = ChartList(
round=message.round_index,
db_name=message.additional_kwargs.get("param_value"),
charts=context_dict,
)
return chart_list
def get_editor_chart_info(
self, conv_uid: str, chart_title: str, cfg: Config
) -> Result[ChartDetail]:
storage_conv: StorageConversation = self.get_storage_conv(conv_uid)
messages_by_round = _split_messages_by_round(storage_conv.messages)
for one_round_message in messages_by_round:
if not one_round_message:
continue
for message in one_round_message:
db_name = message.additional_kwargs.get("param_value")
if not db_name:
logger.error(
"this dashboard dialogue version too old, can't support editor!"
)
return Result.failed(
msg="this dashboard dialogue version too old, can't support editor!"
)
if message.type == "view":
view_data: dict = _parse_pure_dict(message.content)
charts: List = view_data.get("charts")
find_chart = list(
filter(lambda x: x["chart_name"] == chart_title, charts)
)[0]
conn = cfg.local_db_manager.get_connector(db_name)
detail: ChartDetail = ChartDetail(
chart_uid=find_chart["chart_uid"],
chart_type=find_chart["chart_type"],
chart_desc=find_chart["chart_desc"],
chart_sql=find_chart["chart_sql"],
db_name=db_name,
chart_name=find_chart["chart_name"],
chart_value=find_chart["values"],
table_value=conn.run(find_chart["chart_sql"]),
)
return Result.succ(detail)
return Result.failed(msg="Can't Find Chart Detail Info!")
def _parse_pure_dict(res_str: str) -> Dict:
output_parser = BaseOutputParser()
context = output_parser.parse_prompt_response(res_str)
return json.loads(context)