DB-GPT/dbgpt/rag/transformer/llm_summarizer.py
M1n9X 759f7d99cc
feat(GraphRAG): enhance GraphRAG by graph community summary (#1801)
Co-authored-by: Florian <fanzhidongyzby@163.com>
Co-authored-by: KingSkyLi <15566300566@163.com>
Co-authored-by: aries_ckt <916701291@qq.com>
Co-authored-by: Fangyin Cheng <staneyffer@gmail.com>
Co-authored-by: yvonneyx <zhuyuxin0627@gmail.com>
2024-08-30 21:59:44 +08:00

49 lines
1.6 KiB
Python

"""LLMSummarizer class."""
import logging
from abc import ABC
from dbgpt.core import HumanPromptTemplate, LLMClient, ModelMessage, ModelRequest
from dbgpt.rag.transformer.base import SummarizerBase
logger = logging.getLogger(__name__)
class LLMSummarizer(SummarizerBase, ABC):
"""LLMSummarizer class."""
def __init__(self, llm_client: LLMClient, model_name: str, prompt_template: str):
"""Initialize the LLMSummarizer."""
self._llm_client = llm_client
self._model_name = model_name
self._prompt_template = prompt_template
async def summarize(self, **args) -> str:
"""Summarize by LLM."""
template = HumanPromptTemplate.from_template(self._prompt_template)
messages = template.format_messages(**args)
# use default model if needed
if not self._model_name:
models = await self._llm_client.models()
if not models:
raise Exception("No models available")
self._model_name = models[0].model
logger.info(f"Using model {self._model_name} to extract")
model_messages = ModelMessage.from_base_messages(messages)
request = ModelRequest(model=self._model_name, messages=model_messages)
response = await self._llm_client.generate(request=request)
if not response.success:
code = str(response.error_code)
reason = response.text
logger.error(f"request llm failed ({code}) {reason}")
return response.text
def truncate(self):
"""Do nothing by default."""
def drop(self):
"""Do nothing by default."""