DB-GPT/dbgpt/app/knowledge/api.py
明天 b124ecc10b
feat: (0.6)New UI (#1855)
Co-authored-by: 夏姜 <wenfengjiang.jwf@digital-engine.com>
Co-authored-by: aries_ckt <916701291@qq.com>
Co-authored-by: wb-lh513319 <wb-lh513319@alibaba-inc.com>
Co-authored-by: csunny <cfqsunny@163.com>
2024-08-21 17:37:45 +08:00

533 lines
18 KiB
Python

import logging
import os
import shutil
import tempfile
from typing import List
from fastapi import APIRouter, Depends, File, Form, UploadFile
from dbgpt._private.config import Config
from dbgpt.app.knowledge.request.request import (
ChunkEditRequest,
ChunkQueryRequest,
DocumentQueryRequest,
DocumentRecallTestRequest,
DocumentSummaryRequest,
DocumentSyncRequest,
EntityExtractRequest,
GraphVisRequest,
KnowledgeDocumentRequest,
KnowledgeQueryRequest,
KnowledgeSpaceRequest,
SpaceArgumentRequest,
)
from dbgpt.app.knowledge.request.response import (
ChunkQueryResponse,
KnowledgeQueryResponse,
)
from dbgpt.app.knowledge.service import KnowledgeService
from dbgpt.app.openapi.api_v1.api_v1 import no_stream_generator, stream_generator
from dbgpt.app.openapi.api_view_model import Result
from dbgpt.configs import TAG_KEY_KNOWLEDGE_FACTORY_DOMAIN_TYPE
from dbgpt.configs.model_config import (
EMBEDDING_MODEL_CONFIG,
KNOWLEDGE_UPLOAD_ROOT_PATH,
)
from dbgpt.core.awel.dag.dag_manager import DAGManager
from dbgpt.rag import ChunkParameters
from dbgpt.rag.embedding.embedding_factory import EmbeddingFactory
from dbgpt.rag.knowledge.base import ChunkStrategy
from dbgpt.rag.knowledge.factory import KnowledgeFactory
from dbgpt.rag.retriever import BaseRetriever
from dbgpt.rag.retriever.embedding import EmbeddingRetriever
from dbgpt.serve.rag.api.schemas import (
ChunkServeRequest,
DocumentServeRequest,
KnowledgeConfigResponse,
KnowledgeDomainType,
KnowledgeStorageType,
KnowledgeSyncRequest,
)
from dbgpt.serve.rag.connector import VectorStoreConnector
from dbgpt.serve.rag.service.service import Service
from dbgpt.storage.vector_store.base import VectorStoreConfig
from dbgpt.util.i18n_utils import _
from dbgpt.util.tracer import SpanType, root_tracer
logger = logging.getLogger(__name__)
CFG = Config()
router = APIRouter()
knowledge_space_service = KnowledgeService()
def get_rag_service() -> Service:
"""Get Rag Service."""
return Service.get_instance(CFG.SYSTEM_APP)
def get_dag_manager() -> DAGManager:
"""Get DAG Manager."""
return DAGManager.get_instance(CFG.SYSTEM_APP)
@router.post("/knowledge/space/add")
def space_add(request: KnowledgeSpaceRequest):
print(f"/space/add params: {request}")
try:
knowledge_space_service.create_knowledge_space(request)
return Result.succ([])
except Exception as e:
return Result.failed(code="E000X", msg=f"space add error {e}")
@router.post("/knowledge/space/list")
def space_list(request: KnowledgeSpaceRequest):
print(f"/space/list params:")
try:
return Result.succ(knowledge_space_service.get_knowledge_space(request))
except Exception as e:
logger.exception(f"Space list error!{str(e)}")
return Result.failed(code="E000X", msg=f"space list error {e}")
@router.post("/knowledge/space/delete")
def space_delete(request: KnowledgeSpaceRequest):
print(f"/space/delete params:")
try:
return Result.succ(knowledge_space_service.delete_space(request.name))
except Exception as e:
return Result.failed(code="E000X", msg=f"space delete error {e}")
@router.post("/knowledge/{space_id}/arguments")
def arguments(space_id: str):
print(f"/knowledge/space/arguments params:")
try:
return Result.succ(knowledge_space_service.arguments(space_id))
except Exception as e:
return Result.failed(code="E000X", msg=f"space arguments error {e}")
@router.post("/knowledge/{space_name}/recall_test")
def recall_test(
space_name: str,
request: DocumentRecallTestRequest,
):
print(f"/knowledge/{space_name}/recall_test params:")
try:
return Result.succ(knowledge_space_service.recall_test(space_name, request))
except Exception as e:
return Result.failed(code="E000X", msg=f"{space_name} recall_test error {e}")
@router.get("/knowledge/{space_id}/recall_retrievers")
def recall_retrievers(
space_id: str,
):
print(f"/knowledge/{space_id}/recall_retrievers params:")
try:
logger.info(f"get_recall_retrievers {space_id}")
subclasses = set()
def recursively_find_subclasses(cls):
for subclass in cls.__subclasses__():
subclasses.add(subclass)
recursively_find_subclasses(subclass)
recursively_find_subclasses(BaseRetriever)
retrievers_with_name = []
base_name_method = BaseRetriever.name.__func__
for cls in subclasses:
if hasattr(cls, "name"):
cls_name_method = getattr(cls, "name")
if cls_name_method.__func__ != base_name_method:
retrievers_with_name.append(cls)
retriever_names = {}
for retriever_cls in retrievers_with_name:
try:
name = retriever_cls.name()
retriever_names[name] = retriever_cls
except Exception as e:
logger.error(f"Error calling name method on {retriever_cls}: {e}")
return Result.succ(list(retriever_names.keys()))
except Exception as e:
return Result.failed(
code="E000X", msg=f"{space_id} get_recall_retrievers error {e}"
)
@router.post("/knowledge/{space_id}/argument/save")
def arguments_save(space_id: str, argument_request: SpaceArgumentRequest):
print(f"/knowledge/space/argument/save params:")
try:
return Result.succ(
knowledge_space_service.argument_save(space_id, argument_request)
)
except Exception as e:
return Result.failed(code="E000X", msg=f"space save error {e}")
@router.post("/knowledge/{space_name}/document/add")
def document_add(space_name: str, request: KnowledgeDocumentRequest):
print(f"/document/add params: {space_name}, {request}")
try:
return Result.succ(
knowledge_space_service.create_knowledge_document(
space=space_name, request=request
)
)
# return Result.succ([])
except Exception as e:
return Result.failed(code="E000X", msg=f"document add error {e}")
@router.post("/knowledge/{space_name}/document/edit")
def document_edit(
space_name: str,
request: KnowledgeDocumentRequest,
service: Service = Depends(get_rag_service),
):
print(f"/document/edit params: {space_name}, {request}")
space = service.get({"name": space_name})
if space is None:
return Result.failed(
code="E000X",
msg=f"knowledge_space {space_name} can not be found",
)
serve_request = DocumentServeRequest(**request.dict())
serve_request.id = request.doc_id
try:
return Result.succ(service.update_document(request=serve_request))
except Exception as e:
return Result.failed(code="E000X", msg=f"document edit error {e}")
@router.get("/knowledge/document/chunkstrategies")
def chunk_strategies():
"""Get chunk strategies"""
print(f"/document/chunkstrategies:")
try:
return Result.succ(
[
{
"strategy": strategy.name,
"name": strategy.value[2],
"description": strategy.value[3],
"parameters": strategy.value[1],
"suffix": [
knowledge.document_type().value
for knowledge in KnowledgeFactory.subclasses()
if strategy in knowledge.support_chunk_strategy()
and knowledge.document_type() is not None
],
"type": set(
[
knowledge.type().value
for knowledge in KnowledgeFactory.subclasses()
if strategy in knowledge.support_chunk_strategy()
]
),
}
for strategy in ChunkStrategy
]
)
except Exception as e:
return Result.failed(code="E000X", msg=f"chunk strategies error {e}")
@router.get("/knowledge/space/config", response_model=Result[KnowledgeConfigResponse])
async def space_config() -> Result[KnowledgeConfigResponse]:
"""Get space config"""
try:
storage_list: List[KnowledgeStorageType] = []
dag_manager: DAGManager = get_dag_manager()
# Vector Storage
vs_domain_types = [KnowledgeDomainType(name="Normal", desc="Normal")]
dag_map = dag_manager.get_dags_by_tag_key(TAG_KEY_KNOWLEDGE_FACTORY_DOMAIN_TYPE)
for domain_type, dags in dag_map.items():
vs_domain_types.append(
KnowledgeDomainType(
name=domain_type, desc=dags[0].description or domain_type
)
)
storage_list.append(
KnowledgeStorageType(
name="VectorStore",
desc=_("Vector Store"),
domain_types=vs_domain_types,
)
)
# Graph Storage
storage_list.append(
KnowledgeStorageType(
name="KnowledgeGraph",
desc=_("Knowledge Graph"),
domain_types=[KnowledgeDomainType(name="Normal", desc="Normal")],
)
)
# Full Text
storage_list.append(
KnowledgeStorageType(
name="FullText",
desc=_("Full Text"),
domain_types=[KnowledgeDomainType(name="Normal", desc="Normal")],
)
)
return Result.succ(
KnowledgeConfigResponse(
storage=storage_list,
)
)
except Exception as e:
return Result.failed(code="E000X", msg=f"space config error {e}")
@router.post("/knowledge/{space_name}/document/list")
def document_list(space_name: str, query_request: DocumentQueryRequest):
logger.info(f"/document/list params: {space_name}, {query_request}")
try:
return Result.succ(
knowledge_space_service.get_knowledge_documents(space_name, query_request)
)
except Exception as e:
logger.exception(f"document list error!{str(e)}")
return Result.failed(code="E000X", msg=f"document list error {e}")
@router.post("/knowledge/{space_name}/graphvis")
def graph_vis(space_name: str, query_request: GraphVisRequest):
print(f"/document/list params: {space_name}, {query_request}")
print(query_request.limit)
try:
return Result.succ(
knowledge_space_service.query_graph(
space_name=space_name, limit=query_request.limit
)
)
except Exception as e:
return Result.failed(code="E000X", msg=f"get graph vis error {e}")
@router.post("/knowledge/{space_name}/document/delete")
def document_delete(space_name: str, query_request: DocumentQueryRequest):
print(f"/document/list params: {space_name}, {query_request}")
try:
return Result.succ(
knowledge_space_service.delete_document(space_name, query_request.doc_name)
)
except Exception as e:
return Result.failed(code="E000X", msg=f"document delete error {e}")
@router.post("/knowledge/{space_name}/document/upload")
async def document_upload(
space_name: str,
doc_name: str = Form(...),
doc_type: str = Form(...),
doc_file: UploadFile = File(...),
):
print(f"/document/upload params: {space_name}")
try:
if doc_file:
if not os.path.exists(os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, space_name)):
os.makedirs(os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, space_name))
# We can not move temp file in windows system when we open file in context of `with`
tmp_fd, tmp_path = tempfile.mkstemp(
dir=os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, space_name)
)
with os.fdopen(tmp_fd, "wb") as tmp:
tmp.write(await doc_file.read())
shutil.move(
tmp_path,
os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, space_name, doc_file.filename),
)
request = KnowledgeDocumentRequest()
request.doc_name = doc_name
request.doc_type = doc_type
request.content = os.path.join(
KNOWLEDGE_UPLOAD_ROOT_PATH, space_name, doc_file.filename
)
space_res = knowledge_space_service.get_knowledge_space(
KnowledgeSpaceRequest(name=space_name)
)
if len(space_res) == 0:
# create default space
if "default" != space_name:
raise Exception(f"you have not create your knowledge space.")
knowledge_space_service.create_knowledge_space(
KnowledgeSpaceRequest(
name=space_name,
desc="first db-gpt rag application",
owner="dbgpt",
)
)
return Result.succ(
knowledge_space_service.create_knowledge_document(
space=space_name, request=request
)
)
return Result.failed(code="E000X", msg=f"doc_file is None")
except Exception as e:
return Result.failed(code="E000X", msg=f"document add error {e}")
@router.post("/knowledge/{space_name}/document/sync")
async def document_sync(
space_name: str,
request: DocumentSyncRequest,
service: Service = Depends(get_rag_service),
):
logger.info(f"Received params: {space_name}, {request}")
try:
space = service.get({"name": space_name})
if space is None:
return Result.failed(code="E000X", msg=f"space {space_name} not exist")
if request.doc_ids is None or len(request.doc_ids) == 0:
return Result.failed(code="E000X", msg="doc_ids is None")
sync_request = KnowledgeSyncRequest(
doc_id=request.doc_ids[0],
space_id=str(space.id),
model_name=request.model_name,
)
sync_request.chunk_parameters = ChunkParameters(
chunk_strategy="Automatic",
chunk_size=request.chunk_size or 512,
chunk_overlap=request.chunk_overlap or 50,
)
doc_ids = await service.sync_document(requests=[sync_request])
return Result.succ(doc_ids)
except Exception as e:
return Result.failed(code="E000X", msg=f"document sync error {e}")
@router.post("/knowledge/{space_name}/document/sync_batch")
async def batch_document_sync(
space_name: str,
request: List[KnowledgeSyncRequest],
service: Service = Depends(get_rag_service),
):
logger.info(f"Received params: {space_name}, {request}")
try:
space = service.get({"name": space_name})
for sync_request in request:
sync_request.space_id = space.id
doc_ids = await service.sync_document(requests=request)
# doc_ids = service.sync_document(
# space_name=space_name, sync_requests=request
# )
return Result.succ({"tasks": doc_ids})
except Exception as e:
logger.exception("document sync batch error!")
return Result.failed(code="E000X", msg=f"document sync batch error {e}")
@router.post("/knowledge/{space_name}/chunk/list")
def chunk_list(
space_name: str,
query_request: ChunkQueryRequest,
service: Service = Depends(get_rag_service),
):
print(f"/chunk/list params: {space_name}, {query_request}")
try:
query = {
"id": query_request.id,
"document_id": query_request.document_id,
"doc_name": query_request.doc_name,
"doc_type": query_request.doc_type,
"content": query_request.content,
}
chunk_res = service.get_chunk_list(
query, query_request.page, query_request.page_size
)
res = ChunkQueryResponse(
data=chunk_res.items,
total=chunk_res.total_count,
page=chunk_res.page,
)
return Result.succ(res)
except Exception as e:
return Result.failed(code="E000X", msg=f"document chunk list error {e}")
@router.post("/knowledge/{space_name}/chunk/edit")
def chunk_edit(
space_name: str,
edit_request: ChunkEditRequest,
service: Service = Depends(get_rag_service),
):
print(f"/chunk/edit params: {space_name}, {edit_request}")
try:
serve_request = ChunkServeRequest(**edit_request.dict())
serve_request.id = edit_request.chunk_id
return Result.succ(service.update_chunk(request=serve_request))
except Exception as e:
return Result.failed(code="E000X", msg=f"document chunk edit error {e}")
@router.post("/knowledge/{vector_name}/query")
def similar_query(space_name: str, query_request: KnowledgeQueryRequest):
print(f"Received params: {space_name}, {query_request}")
embedding_factory = CFG.SYSTEM_APP.get_component(
"embedding_factory", EmbeddingFactory
)
config = VectorStoreConfig(
name=space_name,
embedding_fn=embedding_factory.create(
EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL]
),
)
vector_store_connector = VectorStoreConnector(
vector_store_type=CFG.VECTOR_STORE_TYPE,
vector_store_config=config,
)
retriever = EmbeddingRetriever(
top_k=query_request.top_k, index_store=vector_store_connector.index_client
)
chunks = retriever.retrieve(query_request.query)
res = [
KnowledgeQueryResponse(text=d.content, source=d.metadata["source"])
for d in chunks
]
return {"response": res}
@router.post("/knowledge/document/summary")
async def document_summary(request: DocumentSummaryRequest):
print(f"/document/summary params: {request}")
try:
with root_tracer.start_span(
"get_chat_instance", span_type=SpanType.CHAT, metadata=request
):
chat = await knowledge_space_service.document_summary(request=request)
headers = {
"Content-Type": "text/event-stream",
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"Transfer-Encoding": "chunked",
}
from starlette.responses import StreamingResponse
if not chat.prompt_template.stream_out:
return StreamingResponse(
no_stream_generator(chat),
headers=headers,
media_type="text/event-stream",
)
else:
return StreamingResponse(
stream_generator(chat, False, request.model_name),
headers=headers,
media_type="text/plain",
)
except Exception as e:
return Result.failed(code="E000X", msg=f"document summary error {e}")