DB-GPT/dbgpt/app/knowledge/document_db.py
明天 b124ecc10b
feat: (0.6)New UI (#1855)
Co-authored-by: 夏姜 <wenfengjiang.jwf@digital-engine.com>
Co-authored-by: aries_ckt <916701291@qq.com>
Co-authored-by: wb-lh513319 <wb-lh513319@alibaba-inc.com>
Co-authored-by: csunny <cfqsunny@163.com>
2024-08-21 17:37:45 +08:00

423 lines
15 KiB
Python

from datetime import datetime
from typing import Any, Dict, List, Union
from sqlalchemy import Column, DateTime, Integer, String, Text, func
from dbgpt._private.config import Config
from dbgpt._private.pydantic import model_to_dict
from dbgpt.serve.conversation.api.schemas import ServeRequest
from dbgpt.serve.rag.api.schemas import (
DocumentServeRequest,
DocumentServeResponse,
DocumentVO,
)
from dbgpt.storage.metadata import BaseDao, Model
from dbgpt.storage.metadata._base_dao import QUERY_SPEC, RES
from dbgpt.util import PaginationResult
CFG = Config()
class KnowledgeDocumentEntity(Model):
__tablename__ = "knowledge_document"
id = Column(Integer, primary_key=True)
doc_name = Column(String(100))
doc_type = Column(String(100))
doc_token = Column(String(100))
space = Column(String(100))
chunk_size = Column(Integer)
status = Column(String(100))
last_sync = Column(DateTime)
content = Column(Text)
result = Column(Text)
vector_ids = Column(Text)
summary = Column(Text)
gmt_created = Column(DateTime)
gmt_modified = Column(DateTime)
questions = Column(Text)
def __repr__(self):
return f"KnowledgeDocumentEntity(id={self.id}, doc_name='{self.doc_name}', doc_type='{self.doc_type}', chunk_size='{self.chunk_size}', status='{self.status}', last_sync='{self.last_sync}', content='{self.content}', result='{self.result}', summary='{self.summary}', gmt_created='{self.gmt_created}', gmt_modified='{self.gmt_modified}', questions='{self.questions}')"
def to_dict(self):
return {
"__tablename__": self.__tablename__,
"id": self.id,
"doc_name": self.doc_name,
"doc_type": self.doc_type,
"doc_token": self.doc_token,
"space": self.space,
"chunk_size": self.chunk_size,
"status": self.status,
"last_sync": self.last_sync,
"content": self.content,
"result": self.result,
"vector_ids": self.vector_ids,
"summary": self.summary,
"gmt_create": self.gmt_created,
"gmt_modified": self.gmt_modified,
"questions": self.questions,
}
class KnowledgeDocumentDao(BaseDao):
def create_knowledge_document(self, document: KnowledgeDocumentEntity):
session = self.get_raw_session()
knowledge_document = KnowledgeDocumentEntity(
doc_name=document.doc_name,
doc_type=document.doc_type,
doc_token=document.doc_token,
space=document.space,
chunk_size=0.0,
status=document.status,
last_sync=document.last_sync,
content=document.content or "",
result=document.result or "",
summary=document.summary or "",
vector_ids=document.vector_ids,
gmt_created=datetime.now(),
gmt_modified=datetime.now(),
questions=document.questions,
)
session.add(knowledge_document)
session.commit()
doc_id = knowledge_document.id
session.close()
return doc_id
def get_knowledge_documents(self, query, page=1, page_size=20):
"""Get a list of documents that match the given query.
Args:
query: A KnowledgeDocumentEntity object containing the query parameters.
page: The page number to return.
page_size: The number of documents to return per page.
"""
session = self.get_raw_session()
print(f"current session:{session}")
knowledge_documents = session.query(KnowledgeDocumentEntity)
if query.id is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.id == query.id
)
if query.doc_name is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.doc_name == query.doc_name
)
if query.doc_type is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.doc_type == query.doc_type
)
if query.space is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.space == query.space
)
if query.status is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.status == query.status
)
knowledge_documents = knowledge_documents.order_by(
KnowledgeDocumentEntity.id.desc()
)
knowledge_documents = knowledge_documents.offset((page - 1) * page_size).limit(
page_size
)
result = knowledge_documents.all()
session.close()
return result
def document_by_id(self, document_id) -> KnowledgeDocumentEntity:
session = self.get_raw_session()
query = session.query(KnowledgeDocumentEntity).filter(
KnowledgeDocumentEntity.id == document_id
)
result = query.first()
session.close()
return result
def documents_by_ids(self, ids) -> List[KnowledgeDocumentEntity]:
"""Get a list of documents by their IDs.
Args:
ids: A list of document IDs.
Returns:
A list of KnowledgeDocumentEntity objects.
"""
session = self.get_raw_session()
print(f"current session:{session}")
knowledge_documents = session.query(KnowledgeDocumentEntity)
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.id.in_(ids)
)
result = knowledge_documents.all()
session.close()
return result
def get_documents(self, query):
session = self.get_raw_session()
print(f"current session:{session}")
knowledge_documents = session.query(KnowledgeDocumentEntity)
if query.id is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.id == query.id
)
if query.doc_name is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.doc_name == query.doc_name
)
if query.doc_type is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.doc_type == query.doc_type
)
if query.space is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.space == query.space
)
if query.status is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.status == query.status
)
knowledge_documents = knowledge_documents.order_by(
KnowledgeDocumentEntity.id.desc()
)
result = knowledge_documents.all()
session.close()
return result
def get_knowledge_documents_count_bulk(self, space_names):
session = self.get_raw_session()
"""
Perform a batch query to count the number of documents for each knowledge space.
Args:
space_names: A list of knowledge space names to query for document counts.
session: A SQLAlchemy session object.
Returns:
A dictionary mapping each space name to its document count.
"""
counts_query = (
session.query(
KnowledgeDocumentEntity.space,
func.count(KnowledgeDocumentEntity.id).label("document_count"),
)
.filter(KnowledgeDocumentEntity.space.in_(space_names))
.group_by(KnowledgeDocumentEntity.space)
)
results = counts_query.all()
docs_count = {result.space: result.document_count for result in results}
session.close()
return docs_count
def get_knowledge_documents_count_bulk_by_ids(self, spaces):
session = self.get_raw_session()
"""
Perform a batch query to count the number of documents for each knowledge space.
Args:
spaces: A list of knowledge space names to query for document counts.
session: A SQLAlchemy session object.
Returns:
A dictionary mapping each space name to its document count.
"""
# build the group by query
counts_query = (
session.query(
KnowledgeDocumentEntity.space,
func.count(KnowledgeDocumentEntity.id).label("document_count"),
)
.filter(KnowledgeDocumentEntity.space.in_(spaces))
.group_by(KnowledgeDocumentEntity.space)
)
results = counts_query.all()
docs_count = {result.space: result.document_count for result in results}
session.close()
return docs_count
def get_knowledge_documents_count(self, query):
session = self.get_raw_session()
knowledge_documents = session.query(func.count(KnowledgeDocumentEntity.id))
if query.id is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.id == query.id
)
if query.doc_name is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.doc_name == query.doc_name
)
if query.doc_type is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.doc_type == query.doc_type
)
if query.space is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.space == query.space
)
if query.status is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.status == query.status
)
count = knowledge_documents.scalar()
session.close()
return count
def update_set_space_id(self, space, space_id):
session = self.get_raw_session()
knowledge_documents = session.query(KnowledgeDocumentEntity)
if space is not None:
knowledge_documents.filter(KnowledgeDocumentEntity.space == space).filter(
KnowledgeDocumentEntity.id == None
).update({KnowledgeDocumentEntity.id: space_id}, synchronize_session=False)
session.commit()
session.close()
def update_knowledge_document(self, document: KnowledgeDocumentEntity):
try:
session = self.get_raw_session()
updated_space = session.merge(document)
session.commit()
return updated_space.id
finally:
session.close()
def raw_delete(self, query: KnowledgeDocumentEntity):
session = self.get_raw_session()
knowledge_documents = session.query(KnowledgeDocumentEntity)
if query.id is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.id == query.id
)
if query.doc_name is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.doc_name == query.doc_name
)
if query.space is not None:
knowledge_documents = knowledge_documents.filter(
KnowledgeDocumentEntity.space == query.space
)
knowledge_documents.delete()
session.commit()
session.close()
def get_list_page(
self, query_request: QUERY_SPEC, page: int, page_size: int
) -> PaginationResult[RES]:
"""Get a page of entity objects.
Args:
query_request (REQ): The request schema object or dict for query.
page (int): The page number.
page_size (int): The page size.
Returns:
PaginationResult: The pagination result.
"""
with self.session() as session:
query = self._create_query_object(session, query_request)
total_count = query.count()
items = (
query.order_by(KnowledgeDocumentEntity.id.desc())
.offset((page - 1) * page_size)
.limit(page_size)
)
items = [self.to_response(item) for item in items]
total_pages = (total_count + page_size - 1) // page_size
return PaginationResult(
items=items,
total_count=total_count,
total_pages=total_pages,
page=page,
page_size=page_size,
)
def from_request(
self, request: Union[ServeRequest, Dict[str, Any]]
) -> KnowledgeDocumentEntity:
"""Convert the request to an entity
Args:
request (Union[ServeRequest, Dict[str, Any]]): The request
Returns:
T: The entity
"""
request_dict = (
request.dict() if isinstance(request, DocumentServeRequest) else request
)
entity = KnowledgeDocumentEntity(**request_dict)
return entity
def to_request(self, entity: KnowledgeDocumentEntity) -> DocumentServeResponse:
"""Convert the entity to a request
Args:
entity (T): The entity
Returns:
REQ: The request
"""
return DocumentServeResponse(
id=entity.id,
doc_name=entity.doc_name,
doc_type=entity.doc_type,
space=entity.space,
chunk_size=entity.chunk_size,
status=entity.status,
last_sync=entity.last_sync,
content=entity.content,
result=entity.result,
vector_ids=entity.vector_ids,
summary=entity.summary,
questions=entity.questions,
gmt_created=entity.gmt_created,
gmt_modified=entity.gmt_modified,
)
def to_response(self, entity: KnowledgeDocumentEntity) -> DocumentServeResponse:
"""Convert the entity to a response
Args:
entity (T): The entity
Returns:
REQ: The request
"""
return DocumentServeResponse(
id=entity.id,
doc_name=entity.doc_name,
doc_type=entity.doc_type,
space=entity.space,
chunk_size=entity.chunk_size,
status=entity.status,
last_sync=str(entity.last_sync),
content=entity.content,
result=entity.result,
vector_ids=entity.vector_ids,
summary=entity.summary,
questions=entity.questions,
gmt_created=str(entity.gmt_created),
gmt_modified=str(entity.gmt_modified),
)
def from_response(
self, response: Union[DocumentServeResponse, Dict[str, Any]]
) -> KnowledgeDocumentEntity:
"""Convert the request to an entity
Args:
request (Union[ServeRequest, Dict[str, Any]]): The request
Returns:
T: The entity
"""
response_dict = (
response.dict() if isinstance(response, DocumentServeResponse) else response
)
entity = KnowledgeDocumentEntity(**response_dict)
return entity