DB-GPT/dbgpt/app/scene/base.py
明天 b124ecc10b
feat: (0.6)New UI (#1855)
Co-authored-by: 夏姜 <wenfengjiang.jwf@digital-engine.com>
Co-authored-by: aries_ckt <916701291@qq.com>
Co-authored-by: wb-lh513319 <wb-lh513319@alibaba-inc.com>
Co-authored-by: csunny <cfqsunny@163.com>
2024-08-21 17:37:45 +08:00

192 lines
5.4 KiB
Python

from enum import Enum
from typing import List, Optional
from dbgpt._private.pydantic import BaseModel, ConfigDict, Field
from dbgpt.core import BaseOutputParser, ChatPromptTemplate
from dbgpt.core._private.example_base import ExampleSelector
class Scene:
def __init__(
self,
code,
name,
describe,
param_types: List = [],
is_inner: bool = False,
show_disable=False,
prepare_scene_code: str = None,
):
self.code = code
self.name = name
self.describe = describe
self.param_types = param_types
self.is_inner = is_inner
self.show_disable = show_disable
self.prepare_scene_code = prepare_scene_code
class ChatScene(Enum):
ChatWithDbExecute = Scene(
code="chat_with_db_execute",
name="Chat Data",
describe="Dialogue with your private data through natural language.",
param_types=["DB Select"],
)
ExcelLearning = Scene(
code="excel_learning",
name="Excel Learning",
describe="Analyze and summarize your excel files.",
is_inner=True,
)
ChatExcel = Scene(
code="chat_excel",
name="Chat Excel",
describe="Dialogue with your excel, use natural language.",
param_types=["File Select"],
prepare_scene_code="excel_learning",
)
ChatWithDbQA = Scene(
code="chat_with_db_qa",
name="Chat DB",
describe="Have a Professional Conversation with Metadata.",
param_types=["DB Select"],
)
ChatExecution = Scene(
code="chat_execution",
name="Use Plugin",
describe="Use tools through dialogue to accomplish your goals.",
param_types=["Plugin Select"],
)
ChatAgent = Scene(
code="chat_agent",
name="Agent Chat",
describe="Use tools through dialogue to accomplish your goals.",
param_types=["Plugin Select"],
)
ChatFlow = Scene(
code="chat_flow",
name="Flow Chat",
describe="Have conversations with conversational AWEL flow.",
param_types=["Flow Select"],
)
InnerChatDBSummary = Scene(
"inner_chat_db_summary", "DB Summary", "Db Summary.", True
)
ChatNormal = Scene(
"chat_normal", "Chat Normal", "Native LLM large model AI dialogue."
)
ChatDashboard = Scene(
"chat_dashboard",
"Dashboard",
"Provide you with professional analysis reports through natural language.",
["DB Select"],
)
ChatKnowledge = Scene(
"chat_knowledge",
"Chat Knowledge",
"Dialogue through natural language and private documents and knowledge bases.",
["Knowledge Space Select"],
)
ExtractTriplet = Scene(
"extract_triplet",
"Extract Triplet",
"Extract Triplet",
["Extract Select"],
True,
)
ExtractSummary = Scene(
"extract_summary",
"Extract Summary",
"Extract Summary",
["Extract Select"],
True,
)
ExtractRefineSummary = Scene(
"extract_refine_summary",
"Extract Summary",
"Extract Summary",
["Extract Select"],
True,
)
ExtractEntity = Scene(
"extract_entity", "Extract Entity", "Extract Entity", ["Extract Select"], True
)
QueryRewrite = Scene(
"query_rewrite", "query_rewrite", "query_rewrite", ["query_rewrite"], True
)
@staticmethod
def of_mode(mode):
return [x for x in ChatScene if mode == x.value()][0]
@staticmethod
def is_valid_mode(mode):
return any(mode == item.value() for item in ChatScene)
def value(self):
return self._value_.code
def scene_name(self):
return self._value_.name
def describe(self):
return self._value_.describe
def param_types(self):
return self._value_.param_types
def show_disable(self):
return self._value_.show_disable
def is_inner(self):
return self._value_.is_inner
class AppScenePromptTemplateAdapter(BaseModel):
"""The template of the scene.
Include some fields that in :class:`dbgpt.core.PromptTemplate`
"""
model_config = ConfigDict(arbitrary_types_allowed=True)
prompt: ChatPromptTemplate = Field(..., description="The prompt of this scene")
template_scene: Optional[str] = Field(
default=None, description="The scene of this template"
)
template_is_strict: Optional[bool] = Field(
default=True, description="Whether strict"
)
output_parser: Optional[BaseOutputParser] = Field(
default=None, description="The output parser of this scene"
)
sep: Optional[str] = Field(
default="###", description="The default separator of this scene"
)
stream_out: Optional[bool] = Field(
default=True, description="Whether to stream out"
)
example_selector: Optional[ExampleSelector] = Field(
default=None, description="Example selector"
)
need_historical_messages: Optional[bool] = Field(
default=False, description="Whether to need historical messages"
)
temperature: Optional[float] = Field(
default=0.6, description="The default temperature of this scene"
)
max_new_tokens: Optional[int] = Field(
default=1024, description="The default max new tokens of this scene"
)
str_history: Optional[bool] = Field(
default=False, description="Whether transform history to str"
)